A Log-Barrier Newton-CG Method for Bound Constrained Optimization with Complexity Guarantees

We describe an algorithm based on a logarithmic barrier function, Newton’s method, and linear conjugate gradients, that obtains an approximate minimizer of a smooth function over the nonnegative orthant. We develop a bound on the complexity of the approach, stated in terms of the required accuracy and the cost of a single gradient evaluation of … Read more

Inertial Block Mirror Descent Method for Non-Convex Non-Smooth Optimization

In this paper, we propose inertial versions of block coordinate descent methods for solving non-convex non-smooth composite optimization problems. We use the general framework of Bregman distance functions to compute the proximal maps. Our method not only allows using two different extrapolation points to evaluate gradients and adding the inertial force, but also takes advantage … Read more

Minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity

An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most O(|log(epsilon)|.epsilon^{-2}) evaluations of the problem’s functions and their derivatives for finding an $\epsilon$-approximate first-order stationary point. This complexity bound therefore generalizes that provided by [Bellavia, Gurioli, … Read more

When a maximal angle among cones is nonobtuse

Principal angles between linear subspaces have been studied for their application to statistics, numerical linear algebra, and other areas. In 2005, Iusem and Seeger defined critical angles within a single convex cone as an extension of antipodality in a compact set. Then, in 2016, Seeger and Sossa extended that notion to two cones. This was … Read more

Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality, and Saddle-Points

In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle-point avoiding. To handle constrained optimization, we first propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. To … Read more

A fully mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zones

Economic dispatch (ED) problem considering valve-point effects (VPE), transmission loss and prohibited operating zones (POZ) is a very challenging issue due to its intrinsic non-convex, non-smooth and non-continuous natures. To achieve a near globally solution, a fully mixed-integer linear programming (FMILP) formulation is proposed for such an ED problem. Since the original loss function is … Read more

Consistency Bounds and Support Recovery of D-stationary Solutions of Sparse Sample Average Approximations

This paper studies properties of the d(irectional)-stationary solutions of sparse sample average approximation (SAA) problems involving difference-of-convex (dc) sparsity functions under a deterministic setting. Such properties are investigated with respect to a vector which satisfies a verifiable assumption to relate the empirical SAA problem to the expectation minimization problem defined by an underlying data distribution. … Read more

A Single Time-Scale Stochastic Approximation Method for Nested Stochastic Optimization

We study constrained nested stochastic optimization problems in which the objective function is a composition of two smooth functions whose exact values and derivatives are not available. We propose a single time-scale stochastic approximation algorithm, which we call the Nested Averaged Stochastic Approximation (NASA), to find an approximate stationary point of the problem. The algorithm … Read more

An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems

This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the QP-AIPP method and its variant solve linearly constrained nonconvex composite optimization problems using a quadratic penalty approach where the generated penalized subproblems are solved by a variant of the underlying AIPP … Read more

A Doubly Accelerated Inexact Proximal Point Method for Nonconvex Composite Optimization Problems

This paper describes and establishes the iteration-complexity of a doubly accelerated inexact proximal point (D-AIPP) method for solving the nonconvex composite minimization problem whose objective function is of the form f+h where f is a (possibly nonconvex) differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with bounded domain. D-AIPP … Read more