Mixed-Integer Optimal Control Problems with switching costs: A shortest path approach

We investigate an extension of Mixed-Integer Optimal Control Problems (MIOCPs) by adding switching costs, which enables the penalization of chattering and extends current modeling capabilities. The decomposition approach, consisting of solving a partial outer convexification to obtain a relaxed solution and using rounding schemes to obtain a discrete-valued control can still be applied, but the … Read more

A primal-dual modified log-barrier method for inequality constrained nonlinear optimization

We present a primal-dual modified log-barrier algorithm to solve inequality constrained nonlinear optimization problems. Basically, the algorithm is a Newton-like method applied to a perturbation of the optimality system that follows from a reformulation of the initial problem by introducing a modified log-barrier function to handle inequality constraints. The algorithm uses an outer/inner iteration scheme … Read more

A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

Random projections for quadratic programs

Random projections map a set of points in a high dimensional space to a lower dimen- sional one while approximately preserving all pairwise Euclidean distances. While random projections are usually applied to numerical data, we show they can be successfully applied to quadratic programming formulations over a set of linear inequality constraints. Instead of solving … Read more

Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of iterations and evaluations of functions and … Read more

On the Complexity of an Augmented Lagrangian Method for Nonconvex Optimization

In this paper we study the worst-case complexity of an inexact Augmented Lagrangian method for nonconvex constrained problems. Assuming that the penalty parameters are bounded, we prove a complexity bound of $\mathcal{O}(|\log(\epsilon)|)$ outer iterations for the referred algorithm to generate an $\epsilon$-approximate KKT point, for $\epsilon\in (0,1)$. When the penalty parameters are unbounded, we prove … Read more

A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

Novel Radar Waveform Optimization for a Cooperative Radar-Communications System

We develop and present the novel minimum estimation error variance waveform design method, that optimizes the spectral shape of a unimodular radar waveform such that the performance of a joint radar-communications system that shares spectrum is maximized. We also perform a numerical study to compare the performance of the new technique with the previously derived … Read more

Large-scale packing of ellipsoids

The problem of packing ellipsoids in the n-dimensional space is considered in the present work. The proposed approach combines heuristic techniques with the resolution of recently introduced nonlinear programming models in order to construct solutions with a large number of ellipsoids. Numerical experiments illustrate that the introduced approach delivers good quality solutions with a computational … Read more

Two New Weak Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and Applications

We introduce two new weaker Constraint Qualifications (CQs) for Mathematical Programs with Equilibrium (or Complementarity) Constraints, MPEC for short. One of them is a tailored version of the Constant Rank of Subspace Component (CRSC) and the other is a relaxed version of the MPEC-No Nonzero Abnormal Multiplier Constraint Qualification (MPEC-NNAMCQ). Both incorporate the exact set … Read more