An Inexact Modified Quasi-Newton Method for Nonsmooth Regularized Optimization

We introduce method iR2N, a modified proximal quasi-Newton method for minimizing the sum of a \(C^1\) function \(f\) and a lower semi-continuous prox-bounded \(h\) that permits inexact evaluations of \(f\), \(\nabla f\) and of the relevant proximal operators. Both \(f\) and \(h\) may be nonconvex. In applications where the proximal operator of \(h\) is not … Read more

A Proximal-Gradient Method for Solving Regularized Optimization Problems with General Constraints

We propose, analyze, and test a proximal-gradient method for solving regularized optimization problems with general constraints. The method employs a decomposition strategy to compute trial steps and uses a merit function to determine step acceptance or rejection. Under various assumptions, we establish a worst-case iteration complexity result, prove that limit points are first-order KKT points, … Read more

Lyapunov-based Analysis on First Order Method for Composite Strong-Weak Convex Functions

The Nesterov’s accelerated gradient (NAG) method generalizes the classical gradient descent algorithm by improving the convergence rate from $\mathcal{O}\left(\frac{1}{t}\right)$ to $\mathcal{O}\left(\frac{1}{t^2}\right)$ in convex optimization. This study examines the proximal gradient framework for additively separable composite functions with smooth and non-smooth components. We demonstrate that Nesterov’s accelerated proximal gradient (NAPG$_\alpha$) method attains a convergence rate of … Read more

Scaled Proximal Gradient Methods for Multiobjective Optimization: Improved Linear Convergence and Nesterov’s Acceleration

Over the past two decades, descent methods have received substantial attention within the multiobjective optimization field. Nonetheless, both theoretical analyses and empirical evidence reveal that existing first-order methods for multiobjective optimization converge slowly, even for well-conditioned problems, due to the objective imbalances. To address this limitation, we incorporate curvature information to scale each objective within … Read more

Composite optimization models via proximal gradient method with a novel enhanced adaptive stepsize

We first consider the convex composite optimization models with the local Lipschitzness condition imposed on the gradient of the differentiable term. The classical proximal gradient method will be studied with our novel enhanced adaptive stepsize selection. To obtain the convergence of the proposed algorithm, we establish a sufficient decrease type inequality associated with our new … Read more

A new proximal gradient algorithm for solving mixed variational inequality problems with a novel explicit stepsize and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm uses a novel explicit stepsize which is proved to be increasing to a positive value. This property plays an important role in improving the speed of the algorithm. … Read more

A Levenberg-Marquardt Method for Nonsmooth Regularized Least Squares

We develop a Levenberg-Marquardt method for minimizing the sum of a smooth nonlinear least-squares term \(f(x) = \frac{1}{2} \|F(x)\|_2^2\) and a nonsmooth term \(h\). Both \(f\) and \(h\) may be nonconvex. Steps are computed by minimizing the sum of a regularized linear least-squares model and a model of \(h\) using a first-order method such as … Read more

Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient

In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are … Read more

A Proximal Gradient Method for Multi-objective Optimization Problems Using Bregman Functions

In this paper, a globally convergent proximal gradient method is developed for convex multi-objective optimization problems using Bregman distance. The proposed method is free from any kind of a priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a descent direction. This … Read more

A unified analysis of descent sequences in weakly convex optimization, including convergence rates for bundle methods

We present a framework for analyzing convergence and local rates of convergence of a class of descent algorithms, assuming the objective function is weakly convex. The framework is general, in the sense that it combines the possibility of explicit iterations (based on the gradient or a subgradient at the current iterate), implicit iterations (using a … Read more