Portfolio optimization in the presence of estimation errors on the expected asset returns

It is well known that the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around the point estimates of the expected asset returns. We investigate the performance of diagonal estimation-error matrices in the description of … Read more

Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

Minkowski Centers via Robust Optimization: Computation and Applications

Centers of convex sets are geometrical objects that have received extensive attention in the mathematical and optimization literature, both from a theoretical and practical standpoint. For instance, they serve as initialization points for many algorithms such as interior-point, hit-and-run, or cutting-planes methods. First, we observe that computing a Minkowski center of a convex set can … Read more

An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

A Lagrangian Dual Method for Two-Stage Robust Optimization with Binary Uncertainties

This paper presents a new exact method to calculate worst-case parameter realizations in two-stage robust optimization problems with categorical or binary-valued uncertain data. Traditional exact algorithms for these problems, notably Benders decomposition and column-and-constraint generation, compute worst-case parameter realizations by solving mixed-integer bilinear optimization subproblems. However, their numerical solution can be computationally expensive not only … Read more

Mean-Covariance Robust Risk Measurement

We introduce a universal framework for mean-covariance robust risk measurement and portfolio optimization. We model uncertainty in terms of the Gelbrich distance on the mean-covariance space, along with prior structural information about the population distribution. Our approach is related to the theory of optimal transport and exhibits superior statistical and computational properties than existing models. … Read more

Risk-averse Regret Minimization in Multi-stage Stochastic Programs

Within the context of optimization under uncertainty, a well-known alternative to minimizing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic programming setting with a discrete probability distribution, we explore the idea of risk-averse regret minimization, where the benchmark policy can only benefit from foreseeing Delta steps into the future. … Read more

The Value of Robust Assortment Optimization Under Ranking-based Choice Models

The ranking-based choice model is a popular model in revenue management for predicting demand for a firm’s products based on the assortment of products that the firm offers to their customers. Because this model has a huge number of parameters, many different ranking-based choice models can be consistent with the historical sales data generated by … Read more

Robust Concave Utility Maximization over a Chance-Constraint

This paper, for the first time, studies an expected utility problem with a chance constraint with incomplete information on a decision maker’s utility function. The model maximizes the worst-case expected utility of random outcome over a set of concave functions within a novel ambiguity set while satisfying a chance constraint with a given probability. To … Read more

Tractable Robust Supervised Learning Models

At the heart of supervised learning is a minimization problem with an objective function that evaluates a set of training data over a loss function that penalizes poor fitting and a regularization function that penalizes over-fitting to the training data. More recently, data-driven robust optimization based learning models provide an intuitive robustness perspective of regularization. … Read more