Two-Stage Robust Optimization with Decision Dependent Uncertainty

The type of decision dependent uncertainties (DDUs) imposes a great challenge in decision making, while existing methodologies are not sufficient to support many real practices. In this paper, we present a systematic study to handle this challenge in two-stage robust optimization~(RO). Our main contributions include three sophisticated variants of column-and-constraint generation method to exactly compute … Read more

On the Sparsity of Optimal Linear Decision Rules in Robust Optimization

We consider the widely-studied class of production-inventory problems with box uncertainty sets from the seminal work of Ben-Tal et al. (2004) on linear decision rules in robust optimization. We prove that there always exists an optimal linear decision rule for this class of problems in which the number of nonzero parameters in the linear decision … Read more

Ensemble Methods for Robust Support Vector Machines using Integer Programming

In this work we study binary classification problems where we assume that our training data is subject to uncertainty, i.e. the precise data points are not known. To tackle this issue in the field of robust machine learning the aim is to develop models which are robust against small perturbations in the training data. We … Read more

Portfolio optimization in the presence of estimation errors on the expected asset returns

It is well known that the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around the point estimates of the expected asset returns. We investigate the performance of diagonal estimation-error matrices in the description of … Read more

Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

Minkowski Centers via Robust Optimization: Computation and Applications

Centers of convex sets are geometric objects that have received extensive attention in the mathematical and optimization literature, both from a theoretical and practical standpoint. For instance, they serve as initialization points for many algorithms such as interior-point, hit-and-run, or cutting-planes methods. First, we observe that computing a Minkowski center of a convex set can be formulated as … Read more

An oracle-based framework for robust combinatorial optimization

We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires … Read more

A Lagrangian Dual Method for Two-Stage Robust Optimization with Binary Uncertainties

This paper presents a new exact method to calculate worst-case parameter realizations in two-stage robust optimization problems with categorical or binary-valued uncertain data. Traditional exact algorithms for these problems, notably Benders decomposition and column-and-constraint generation, compute worst-case parameter realizations by solving mixed-integer bilinear optimization subproblems. However, their numerical solution can be computationally expensive not only … Read more

Mean-Covariance Robust Risk Measurement

We introduce a universal framework for mean-covariance robust risk measurement and portfolio optimization. We model uncertainty in terms of the Gelbrich distance on the mean-covariance space, along with prior structural information about the population distribution. Our approach is related to the theory of optimal transport and exhibits superior statistical and computational properties than existing models. … Read more

Risk-averse Regret Minimization in Multi-stage Stochastic Programs

Within the context of optimization under uncertainty, a well-known alternative to minimizing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic programming setting with a discrete probability distribution, we explore the idea of risk-averse regret minimization, where the benchmark policy can only benefit from foreseeing Delta steps into the future. … Read more