Optimizing Vaccine Distribution in Developing Countries under Natural Disaster Risk

For many developing countries, COVID-19 vaccination roll-out programs are not only slow but vaccination centers are also exposed to the risk of natural disaster, like flooding, which may slow down vaccination progress even further. Policy-makers in developing countries therefore seek to implement strategies that hedge against distribution risk in order for vaccination campaigns to run … Read more

Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity, which is both of theoretical as well as practical interest. This area of … Read more

Dual solutions in convex stochastic optimization

This paper studies duality and optimality conditions for general convex stochastic optimization problems. The main result gives sufficient conditions for the absence of a duality gap and the existence of dual solutions in a locally convex space of random variables. It implies, in particular, the necessity of scenario-wise optimality conditions that are behind many fundamental … Read more

Duality in convex stochastic optimization

This paper studies duality and optimality conditions in general convex stochastic optimization problems introduced by Rockafellar and Wets in \cite{rw76}. We derive an explicit dual problem in terms of two dual variables, one of which is the shadow price of information while the other one gives the marginal cost of a perturbation much like in … Read more

Dynamic programming in convex stochastic optimization

This paper studies the dynamic programming principle for general convex stochastic optimization problems introduced by Rockafellar and Wets in the 1970s. We extend the applicability of the theory by relaxing compactness and boundedness assumptions. In the context of financial mathematics, the relaxed assumptions are satisfied under the well-known no-arbitrage condition and the reasonable asymptotic elasticity … Read more

Operation of an ambulance fleet under uncertainty

We introduce two new optimization models for the dispatch of ambulances. These models are to our knowledge the first providing a full modelling of the operation of an ambulance fleet, taking into account all or almost all constraints of the problem. The first model, called the ambulance selection problem, is used when an emergency call … Read more

Exact Solutions to a Carsharing Pricing and Relocation Problem under Uncertainty

In this article we study the problem of jointly deciding carsharing prices and vehicle relocations. We consider carsharing services operating in the context of multi-modal urban transportation systems. Pricing decisions take into account the availability of alternative transport modes, and customer preferences with respect to these. In order to account for the inherent uncertainty in … Read more

Non-anticipative risk-averse analysis with effective scenarios applied to long-term hydrothermal scheduling

In this paper, we deal with long-term operation planning problems of hydrothermal power systems by considering scenario analysis and risk aversion. This is a stochastic sequential decision problem whose solution must be non-anticipative, in the sense that a decision at a stage cannot use a perfect knowledge of the future. We propose strategies to reduce … Read more

Risk-Averse Stochastic Optimal Control: an efficiently computable statistical upper bound

In this paper, we discuss an application of the SDDP type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of … Read more

Approximation algorithm for the two-stage stochastic set multicover problem with simple resource

We study a two-stage, finite-scenarios stochastic version of the set multicover problem, where there is uncertainty about a demand for each element to be covered and the penalty cost is imposed linearly on the shortfall in each demand. This problem is NP-hard and has an application in shift scheduling in crowdsourced delivery services. For this … Read more