Dynamic programming in convex stochastic optimization

This paper studies the dynamic programming principle for general convex stochastic optimization problems introduced by Rockafellar and Wets in the 1970s. We extend the applicability of the theory by relaxing compactness and boundedness assumptions. In the context of financial mathematics, the relaxed assumptions are satisfied under the well-known no-arbitrage condition and the reasonable asymptotic elasticity … Read more

Operation of an ambulance fleet under uncertainty

We introduce two new optimization models for the dispatch of ambulances. These models are to our knowledge the first providing a full modelling of the operation of an ambulance fleet, taking into account all or almost all constraints of the problem. The first model, called the ambulance selection problem, is used when an emergency call … Read more

Exact Solutions to a Carsharing Pricing and Relocation Problem under Uncertainty

In this article we study the problem of jointly deciding carsharing prices and vehicle relocations. We consider carsharing services operating in the context of multi-modal urban transportation systems. Pricing decisions take into account the availability of alternative transport modes, and customer preferences with respect to these. In order to account for the inherent uncertainty in … Read more

Non-anticipative risk-averse analysis with effective scenarios applied to long-term hydrothermal scheduling

In this paper, we deal with long-term operation planning problems of hydrothermal power systems by considering scenario analysis and risk aversion. This is a stochastic sequential decision problem whose solution must be non-anticipative, in the sense that a decision at a stage cannot use a perfect knowledge of the future. We propose strategies to reduce … Read more

Risk-Averse Stochastic Optimal Control: an efficiently computable statistical upper bound

In this paper, we discuss an application of the SDDP type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of … Read more

Approximation algorithm for the two-stage stochastic set multicover problem with simple resource

We study a two-stage, finite-scenarios stochastic version of the set multicover problem, where there is uncertainty about a demand for each element to be covered and the penalty cost is imposed linearly on the shortfall in each demand. This problem is NP-hard and has an application in shift scheduling in crowdsourced delivery services. For this … Read more

Algebraic-based primal interior-point algorithms for stochastic infinity norm optimization

We study the two-stage stochastic infinity norm optimization problem with recourse. First, we study and analyze the algebraic structure of the infinity norm cone, and use its algebra to compute the derivatives of the barrier recourse functions. Then, we show that the barrier recourse functions and the composite barrier functions for this optimization problem are … Read more

A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize when an … Read more

Applications of stochastic mixed-integer second-order cone optimization

Second-order cone programming problems are a tractable subclass of convex optimization problems and there are known polynomial algorithms for solving them. Stochastic second-order cone programming problems have also been studied in the past decade and efficient algorithms for solving them exist. A new class of interest to optimization community and practitioners is the mixed-integer version … Read more

Stochastic Scheduling of Chemotherapy Appointments Considering Patient Acuity Levels

The uncertainty in infusion durations and non-homogeneous care level needs of patients are the critical factors that lead to difficulties in chemotherapy scheduling. We study the problem of scheduling patient appointments and assigning patients to nurses under uncertainty in infusion durations for a given day. We consider instantaneous nurse workload, represented in terms of total … Read more