A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize when an … Read more

Applications of stochastic mixed-integer second-order cone optimization

Second-order cone programming problems are a tractable subclass of convex optimization problems and there are known polynomial algorithms for solving them. Stochastic second-order cone programming problems have also been studied in the past decade and efficient algorithms for solving them exist. A new class of interest to optimization community and practitioners is the mixed-integer version … Read more

Stochastic Scheduling of Chemotherapy Appointments Considering Patient Acuity Levels

The uncertainty in infusion durations and non-homogeneous care level needs of patients are the critical factors that lead to difficulties in chemotherapy scheduling. We study the problem of scheduling patient appointments and assigning patients to nurses under uncertainty in infusion durations for a given day. We consider instantaneous nurse workload, represented in terms of total … Read more

Dual SDDP for risk-averse multistage stochastic programs

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic Dual Dynamic Programming (SDDP) is a well known tool to address such problems under time-independence assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm, leading to converging and deterministic upper bounds for risk-averse … Read more

Practicable Robust Stochastic Optimization under Divergence Measures

We seek to provide practicable approximations of the two-stage robust stochastic optimization (RSO) model when its ambiguity set is constructed with an f-divergence radius. These models are known to be numerically challenging to various degrees, depending on the choice of the f-divergence function. The numerical challenges are even more pronounced under mixed-integer rst-stage decisions. In … Read more

A Homogeneous Predictor-Corrector Algorithm for Stochastic Nonsymmetric Convex Conic Optimization With Discrete Support

We consider a stochastic convex optimization problem over nonsymmetric cones with discrete support. This class of optimization problems has not been studied yet. By using a logarithmically homogeneous self-concordant barrier function, we present a homogeneous predictor-corrector interior-point algorithm for solving stochastic nonsymmetric conic optimization problems. We also derive an iteration bound for the proposed algorithm. … Read more

Barrier Methods Based on Jordan-Hilbert Algebras for Stochastic Optimization in Spin Factors

We present decomposition logarithmic-barrier interior-point methods based on unital Jordan-Hilbert algebras for infinite-dimensional stochastic second-order cone programming problems in spin factors. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best … Read more

Robust Generalization despite Distribution Shift via Minimum Discriminating Information

Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use … Read more

Batch Learning in Stochastic Dual Dynamic Programming

We consider the stochastic dual dynamic programming (SDDP) algorithm, which is a widely employed algorithm applied to multistage stochastic programming, and propose a variant using batch learning, a technique used with success in the reinforcement learning framework. We cast SDDP as a type of Q-learning algorithm and describe its application in both risk neutral and … Read more

Efficient presolving methods for the influence maximization problem in social networks

We consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a social network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the … Read more