A comparison of sample-based Stochastic Optimal Control methods

In this paper, we compare the performance of two scenario-based numerical methods to solve stochastic optimal control problems: scenario trees and particles. The problem consists in finding strategies to control a dynamical system perturbed by exogenous noises so as to minimize some expected cost along a discrete and finite time horizon. We introduce the Mean … Read more

Fenchel Decomposition for Stochastic Mixed-Integer Programming

This paper introduces a new cutting plane method for two-stage stochastic mixed-integer programming (SMIP) called Fenchel decomposition (FD). FD uses a class of valid inequalities termed, FD cuts, which are derived based on Fenchel cutting planes from integer programming. First, we derive FD cuts based on both the first and second-stage variables, and devise an … Read more

Analysis of Stochastic Dual Dynamic Programming Method

In this paper we discuss statistical properties and rates of convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random sample from the original (true) distribution is generated and consequently … Read more

A multi-step interior point warm-start approach for large-scale stochastic linear programming

Interior point methods (IPM) have been recognised as an efficient approach for the solution of large scale stochastic programming problems due to their ability of exploiting the block-angular structure of the augmented system particular to this problem class. Stochastic programming problems, however, have exploitable structure beyond the simple matrix shape: namely the scenarios are typically … Read more

Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition

We formulate a risk-averse two-stage stochastic linear programming problem in which unresolved uncertainty remains after the second stage. The objective function is formulated as a composition of conditional risk measures. We analyze properties of the problem and derive necessary and sufficient optimality conditions. Next, we construct two decomposition methods for solving the problem. The first … Read more

Sample Average Approximation for Stochastic Dominance Constrained Programs

In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with … Read more

Distributionally Robust Optimization and its Tractable Approximations

In this paper, we focus on a linear optimization problem with uncertainties, having expectations in the objective and in the set of constraints. We present a modular framework to obtain an approximate solution to the problem that is distributionally robust, and more flexible than the standard technique of using linear rules. Our framework begins by … Read more

A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming

We present a structure-conveying algebraic modelling language for mathematical programming. The proposed language extends AMPL with object-oriented features that allows the user to onstruct models from sub-models, and is implemented as a combination of pre- and post-processing phases for AMPL. Unlike traditional modelling languages, the new approach does not scramble the block structure of the … Read more

On a time consistency concept in risk averse multi-stage stochastic programming

In this paper we discuss time consistency of multi-stage risk averse stochastic programming problems. We approach the concept of time consistency from an optimization point of view. That is, at each state of the system optimality of a decision policy should not involve states which cannot happen in the future. We also discuss a relation … Read more

Optimal Scenario Tree Reduction for Stochastic Streamflows in Power Generation Planning Problems

The mid-term operation planning of hydro-thermal power systems needs a large number of synthetic sequences to represent accurately stochastic streamflows. These sequences are generated by a periodic autoregressive model. If the number of synthetic sequences is too big, the optimization planning problem may be too difficult to solve. To select a small set of sequences … Read more