Machine learning approach to chance-constrained problems: An algorithm based on the stochastic gradient descent

We consider chance-constrained problems with discrete random distribution. We aim for problems with a large number of scenarios. We propose a novel method based on the stochastic gradient descent method which performs updates of the decision variable based only on looking at a few scenarios. We modify it to handle the non-separable objective. A complexity … Read more

Decomposition Methods for Solving Markov Decision Processes with Multiple Models of the Parameters

We consider the problem of decision-making in Markov decision processes (MDPs) when the reward or transition probability parameters are not known with certainty. We consider an approach in which the decision-maker (DM) considers multiple models of the parameters for an MDP and wishes to find a policy that optimizes an objective function that considers the … Read more

Multi-component Maintenance Optimization: A Stochastic Programming Approach

Maintenance optimization has been extensively studied in the past decades. However, most of the existing maintenance models focus on single-component systems. Multi-component maintenance optimization, which joins the stochastic failure processes with the combinatorial maintenance grouping problems, remains as an open issue. To address this challenge, we study this problem in a finite planning horizon by … Read more

The policy graph decomposition of multistage stochastic optimization problems

We propose the policy graph as a way of formulating multistage stochastic optimization problems. We also propose an extension to the stochastic dual dynamic programming algorithm to solve a class of problems formulated as a policy graph. This class includes discrete-time, infinite horizon, multistage stochastic optimization problems with continuous state and control variables. Article Download … Read more

Projective Hedging for Stochastic Programming

We propose a decomposition algorithm for multistage stochastic programming that resembles the progressive hedging method of Rockafellar and Wets, but is provably capable of several forms of asynchronous operation. We derive the method from a class of projective operator splitting methods fairly recently proposed by Combettes and Eckstein, significantly expanding the known applications of those … Read more

Bounds for Probabilistic Programming with Application to a Blend Planning Problem

In this paper, we derive deterministic inner approximations for single and joint probabilistic constraints based on classical inequalities from probability theory such as the one-sided Chebyshev inequality, Bernstein inequality, Chernoff inequality and Hoeffding inequality (see Pinter 1989). New assumptions under which the bounds based approximations are convex allowing to solve the problem efficiently are derived. … Read more

Inexact cutting planes for two-stage mixed-integer stochastic programs

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs. Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios and may be overly conservative for others. … Read more

Stochastic Decomposition for Two-stage Stochastic Linear Programs with Random Cost Coefficients

Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average … Read more

Analysis of Models for the Stochastic Outpatient Procedure Scheduling Problem

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of procedures for a single provider, where each procedure has a known type and associated probability distribution of random duration. Our objective is to minimize the expectation … Read more

Inexact cuts in Stochastic Dual Dynamic Programming

We introduce an extension of Stochastic Dual Dynamic Programming (SDDP) to solve stochastic convex dynamic programming equations. This extension applies when some or all primal and dual subproblems to be solved along the forward and backward passes of the method are solved with bounded errors (inexactly). This inexact variant of SDDP is described both for … Read more