Stochastic first-order methods with multi-extrapolated momentum for highly smooth unconstrained optimization

In this paper we consider an unconstrained stochastic optimization problem where the objective function exhibits a high order of smoothness. In particular, we propose a stochastic first-order method (SFOM) with multi-extrapolated momentum, in which multiple extrapolations are performed in each iteration, followed by a momentum step based on these extrapolations. We show that our proposed … Read more

Limited memory gradient methods for unconstrained optimization

The limited memory steepest descent method (Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method … Read more

An improvement of the Goldstein line search

This paper introduces CLS, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search … Read more

A harmonic framework for stepsize selection in gradient methods

We study the use of inverse harmonic Rayleigh quotients with target for the stepsize selection in gradient methods for nonlinear unconstrained optimization problems. This provides not only an elegant and flexible framework to parametrize and reinterpret existing stepsize schemes, but also gives inspiration for new flexible and tunable families of steplengths. In particular, we analyze … Read more

An Adaptive Trust-Region Method Without Function Evaluations

In this paper we propose an adaptive trust-region method for smooth unconstrained optimization. The update rule for the trust-region radius relies only on gradient evaluations. Assuming that the gradient of the objective function is Lipschitz continuous, we establish worst-case complexity bounds for the number of gradient evaluations required by the proposed method to generate approximate … Read more

Two limited-memory optimization methods with minimum violation of the previous quasi-Newton equations

Limited-memory variable metric methods based on the well-known BFGS update are widely used for large scale optimization. The block version of the BFGS update, derived by Schnabel (1983), Hu and Storey (1991) and Vl·cek and Luk·san (2019), satis¯es the quasi-Newton equations with all used di®erence vectors and for quadratic objective functions gives the best improvement … Read more

Scalable adaptive cubic regularization methods

Adaptive cubic regularization (ARC) methods for unconstrained optimization compute steps from linear systems involving a shifted Hessian in the spirit of the Levenberg-Marquardt and trust-region methods. The standard approach consists in performing an iterative search for the shift akin to solving the secular equation in trust-region methods. Such search requires computing the Cholesky factorization of … Read more

Further developments of methods for traversing regions of non-convexity in optimization problems

This paper continues to address one of its author’s obsession with the well- known problem of dealing with non-convexity during the minimization of a nonlinear function f(x) by Newton-like methods. It builds on some proposals made by the present authors in “A Comparison of methods for traversing regions of non-convexity in optimization problems”. (Numerical Algorithms … Read more

Equipping Barzilai-Borwein method with two dimensional quadratic termination property

A new gradient stepsize is derived at the motivation of equipping the Barzilai-Borwein (BB) method with two dimensional quadratic termination property. A remarkable feature of the new stepsize is that its computation only depends on the BB stepsizes in previous iterations without the use of exact line searches and Hessian, and hence it can easily … Read more

A family of optimal weighted conjugate-gradient-type methods for strictly convex quadratic minimization

We introduce a family of weighted conjugate-gradient-type methods, for strictly convex quadratic functions, whose parameters are determined by a minimization model based on a convex combination of the objective function and its gradient norm. This family includes the classical linear conjugate gradient method and the recently published delayed weighted gradient method as the extreme cases … Read more