Vehicle Routing Problems with Time Windows and Convex Node Costs

We consider a variant of the vehicle routing problems with time windows, where the objective includes the inconvenience cost modeled by a convex function on each node. We formulate this mixed integer convex program using a novel set partitioning formulation, by considering all combinations of routes and block structures over the routes. We apply a … Read more

Scalable Robust and Adaptive Inventory Routing

We consider the finite horizon inventory routing problem with uncertain demand, where a supplier must deliver a particular commodity to its customers periodically, such that even under uncertain demand the customers do not stock out, e.g. supplying residential heating oil to customers. Current techniques that solve this problem with stochastic demand, robust or adaptive optimization … Read more

Complexity of Routing Problems with Release Dates and Deadlines

The desire of companies to offer same-day delivery leads to interesting new routing problems. We study the complexity of a setting in which a delivery to a customer is guaranteed to take place within a pre-specified time after the customer places the order. Thus, an order has a release date (when the order is placed) … Read more

Numerically safe lower bounds for the Capacitated Vehicle Routing Problem

The resolution of integer programming problems is typically performed via branch-and-bound. Nodes of the branch-and-bound tree are pruned whenever the corresponding subproblem is proven not to contain a solution better than the best solution found so far. This is a key ingredient for achieving reasonable solution times. However, since subproblems are solved in floating-point arithmetic, … Read more

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem

We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for … Read more

The stochastic vehicle routing problem, a literature review, part I: models

Building on the work of Gendreau, Laporte, and Seguin (1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems (SVRP). The numerous variants of the problem that have been studied in the literature are described and categorized. Also a thorough review of solution methods applied to the SVRP is included … Read more

The Vehicle Routing Problem with Occasional Drivers

We consider a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries, but may also use the services of occasional drivers who are willing to make a single delivery using their own vehicle in return for a small compensation if the delivery location is not … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Vehicle Routing with Roaming Delivery Locations

We propose the vehicle routing problem with roaming delivery locations (VRPRDL) to model an innovation in last-mile delivery where a customer’s order is delivered to the trunk of his car. We develop construction and improvement heuristics for the VRPRDL based on two problem-specific techniques: (1) efficiently optimizing the delivery locations for a fixed customer delivery … Read more

A disjunctive convex programming approach to the pollution routing problem

The pollution routing problem (PRP) aims to determine a set of routes and speed over each leg of the routes simultaneously to minimize the total operational and environmental costs. A common approach to solve the PRP exactly is through speed discretization, i.e., assuming that speed over each arc is chosen from a prescribed set of … Read more