A Stability Result for Linear Markov Decision Processes

In this paper, we propose a semi-metric for Markov processes that allows to bound optimal values of linear Markov Decision Processes (MDPs). Similar to existing notions of distance for general stochastic processes our distance is based on transportation metrics. Apart from the specialization to MDPs, our contribution is to make the distance problem specific, i.e., … Read more

Data-Driven Optimization of Reward-Risk Ratio Measures

We investigate a class of fractional distributionally robust optimization problems with uncertain probabilities. They consist in the maximization of ambiguous fractional functions representing reward-risk ratios and have a semi-infinite programming epigraphic formulation. We derive a new fully parameterized closed-form to compute a new bound on the size of the Wasserstein ambiguity ball. We design a … Read more

Data-Driven Optimization of Reward-Risk Ratio Measures

We investigate a class of fractional distributionally robust optimization problems with uncertain probabilities. They consist in the maximization of ambiguous fractional functions representing reward-risk ratios and have a semi-infinite programming epigraphic formulation. We derive a new fully parameterized closed-form to compute a new bound on the size of the Wasserstein ambiguity ball. We design a … Read more

Scenario Reduction Revisited: Fundamental Limits and Guarantees

The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure … Read more

Distributionally Robust Reward-risk Ratio Programming with Wasserstein Metric

Reward-risk ratio (RR) is a very important stock market definition. In recent years, people extend RR model as distributionally robust reward-risk ratio (DRR) to capture the situation that the investor does not have complete information on the distribution of the underlying uncertainty. In this paper, we study the DRR model where the ambiguity on the … Read more

Distributionally Robust Stochastic Programming

In this paper we study distributionally robust stochastic programming in a setting where there is a specified reference probability measure and the uncertainty set of probability measures consists of measures in some sense close to the reference measure. We discuss law invariance of the associated worst case functional and consider two basic constructions of such … Read more

Distributionally Robust Logistic Regression

This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown data-generating distribution with high … Read more

Scenario Trees – A Process Distance Approach

The approximation of stochastic processes by trees is an important topic in multistage stochastic programming. In this paper we focus on improving the approximation of large trees by smaller (tractable) trees. The quality of the approximation is measured by the nested distance, recently introduced in [Pflug]. The nested distance is derived from the Wasserstein distance. … Read more

On the Geometry of Acceptability Functionals

Abstract In this paper we discuss continuity properties of acceptability functionals or risk measures. The dependence of the random variable is investigated first. The main contribution and focus of this paper is to study how acceptability functionals vary whenever the underlying probability measure is perturbed. Abstract It turns out that the Wasserstein distance provides a … Read more