Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming

In this paper we present a primal-dual inexact infeasible interior-point algorithm for semidefinite programming problems (SDP). This algorithm allows the use of search directions that are calculated from the defining linear system with only moderate accuracy, and our analysis does not require feasibility to be maintained even if the initial iterate happened to be a … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

The Empirical Behavior of Sampling Methods for Stochastic Programming

We investigate the quality of solutions obtained from sample-average approximations to two-stage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality of the computed solutions in various … Read more

A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more

A New Self-Dual Embedding Method for Convex Programming

In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for … Read more