Gradient-Controlled, Typical-Distance Clustering for Global Optimization

We present a stochastic global optimization method that employs a clustering technique which is based on a typical distance and a gradient test. The method aims to recover all the local minima inside a rectangular domain. A new stopping rule is used. Comparative results on a set of test functions are reported. Citation Preprint, no … Read more

Implementation of Infinite Dimensional Interior Point Method for Solving Multi-criteria Linear-Quadratic Control Problem

We describe an implementation of an infinite-dimensional primal-dual algorithm based on the Nesterov-Todd direction. Several applications to both continuous and discrete-time multi-criteria linear-quadratic control problems and linear-quadratic control problem with quadratic constraints are described. Numerical results show a very fast convergence (typically, within 3-4 iterations) to optimal solutions Citation Preprint, May, 2004, University of Notre … Read more

Optimality Measures for Performance Profiles

We examine the importance of optimality measures when benchmarking a set of solvers, and show that scaling requirements lead to a convergence test for nonlinearly constrained optimization solvers that uses a mixture of absolute and relative error measures. We demonstrate that this convergence test is well behaved at any point where the constraints satisfy the … Read more

Benchmarking Optimization Software with COPS 3.0

We describe version 3.0 of the COPS set of nonlinearly constrained optimization problems. We have added new problems, as well as streamlined and improved most of the problems. We also provide a comparison of the FILTER, KNITRO, LOQO, MINOS, and SNOPT solvers on these problems. Citation Technical Report ANL/MCS-TM-273, Argonne National Laboratory, 02/04. Article Download … Read more

A sequential quadratic programming algorithm with a piecewise linear merit function

A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays … Read more

Sensitivity analysis for linear optimization problem with fuzzy data in the objective function

Linear programming problems with fuzzy coefficients in the objective function are considered. Emphasis is on the dependence of the optimal solution from linear perturbations of the membership functions of the objective function coefficients as well as on the computation of a robust solution of the fuzzy linear problem if the membership functions are not surely … Read more

An Iterative Solver-Based Infeasible Primal-Dual Path-Following Algorithm for Convex QP

In this paper we develop an interior-point primal-dual long-step path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of an iterative (linear system) solver. We propose a new linear system, which we refer to as the \emph{augmented normal equation} (ANE), to determine the primal-dual search directions. Since the condition number … Read more

SDP vs. LP relaxations for the moment approach in some performance evaluation problems

Given a Markov process we are interested in the numerical computation of the moments of the exit time from a bounded domain. We use a moment approach which, together with appropriate semidefinite positivity moment conditions, yields a sequence of semidefinite programs (or SDP relaxations), depending on the number of moments considered, that provide a sequence … Read more