A strong conic quadratic reformulation for machine-job assignment with controllable processing times

We describe a polynomial-size conic quadratic reformulation for a machine-job assignment problem with separable convex cost. Because the conic strengthening is based on only the objective of the problem, it can also be applied to other problems with similar cost functions. Computational results demonstrate the effectiveness of the conic reformulation. Citation Appeared in Operations Research … Read more

Conic Mixed-Integer Rounding Cuts

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These … Read more

Tractable algorithms for chance-constrained combinatorial problems

This paper aims at proposing tractable algorithms to find effectively good solutions to large size chance-constrained combinatorial problems. A new robust model is introduced to deal with uncertainty in mixed-integer linear problems. It is shown to be strongly related to chance-constrained programming when considering pure 0-1 problems. Furthermore, its tractability is highlighted. Then, an optimization … Read more

Max-min separability: incremental approach and application to supervised data classification

A new algorithm for the computation of a piecewise linear function separating two finite point sets in $n$-dimensional space is developed and the algorithm is applied to solve supervised data classification problems. The algorithm computes hyperplanes incrementally and it finds as many hyperplanes as necessary to separate two sets with respect to some tolerance. An … Read more

A new lower bound for one-machine earliness-tardiness scheduling

In one-machine scheduling, MIP time-indexed formulations are often used to provide very good lower bounds through Lagrangian relaxations. In order to get an improved lower bound, we add valid cuts to a time-indexed formulation and show we still have a Lagrangian relaxation that can be solved as a shortest path in a graph. Two branch-and-bound … Read more

Semidefinite Representation of Convex Sets

Let $S =\{x\in \re^n:\, g_1(x)\geq 0, \cdots, g_m(x)\geq 0\}$ be a semialgebraic set defined by multivariate polynomials $g_i(x)$. Assume $S$ is convex, compact and has nonempty interior. Let $S_i =\{x\in \re^n:\, g_i(x)\geq 0\}$, and $\bdS$ (resp. $\bdS_i$) be the boundary of $S$ (resp. $S_i$). This paper, as does the subject of semidefinite programming (SDP), concerns … Read more

A primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed within the framework of the line search strategy. We show the global convergence property of our method. Finally some numerical … Read more

A globally convergent trust-region SQP method without a penalty function for nonlinearly constrained optimization

In this paper, we propose a new trust-region SQP method, which uses no penalty function, for solving nonlinearly constrained optimization problem. Our method consists of alternate two phases. Specifically, we alternately proceed the feasibility restoration phase and the objective function minimization phase. The global convergence property of the proposed method is shown. Citation Cooperative Research … Read more

Minimum weight t-composition of an integer

If $p \geq t$ are positive integers, a t-composition of p is an ordered t-tuple of positive integers summing p. If $T=(s_1, s_2, \dots, s_t)$ is a t-composition of p and W is a $p-(t-1) \times t$ matrix, call $W(T)= \sum_{k=1}^t w_{s_k k}$ the weight of the t-composition T. We show that finding a minimum … Read more

Developments of NEWUOA for unconstrained minimization without derivatives

The NEWUOA software is described briefly, with some numerical results that show good efficiency and accuracy in the unconstrained minimization without derivatives of functions of up to 320 variables. Some preliminary work on an extension of NEWUOA that allows simple bounds on the variables is also described. It suggests a variation of a technique in … Read more