Adaptive Constraint Reduction for Convex Quadratic Programming

We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational e ort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with a … Read more

GRASP with path-relinking for the multi-plant capacitated lot sizing problem

This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to … Read more

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki {¥it et al.} with relaxation order 1, except the … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Benchmarking Derivative-Free Optimization Algorithms

We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more

A CONSTRUCTIVE HEURISTIC FOR THE INTEGRATED INVENTORY-DISTRIBUTION PROBLEM

We study the integrated inventory distribution problem which is concerned with multiperiod inventory holding, backlogging, and vehicle routing decisions for a set of customers who receive units of a single item from a depot with infinite supply. We consider an environment in which the demand at each customer is deterministic and relatively small compared to … Read more

The Maximum Flow Network Interdiction Problem: Valid Inequalities, Integrality Gaps, and Approximability

We study the Maximum Flow Network Interdiction Problem (MFNIP). We present two classes of polynomially separable valid inequalities for Cardinality MFNIP. We also prove the integrality gap of the LP relaxation of Wood’s (1993) integer program is not bounded by a constant factor, even when the LP relaxation is strengthened by our valid inequalities. Finally, … Read more

Rapidly Solving an Online Sequence of Maximum Flow Problems

We investigate how to rapidly solve an online sequence of maximum flow problems. Sequences of maximum flow problems arise in a diverse collection of settings, including stochastic network programming and real-time scheduling of jobs on a two-processor computer. In this paper, we formulate solving an online sequence of maximum flow problems as the Maximum Flow … Read more