Min-max-min robustness: a new approach to combinatorial optimization under uncertainty based on multiple solutions

In the classical min-max approach to robust combinatorial optimization, a single feasible solution is computed that optimizes the worst case over a given set of considered scenarios. As is well known, this approach is very conservative, leading to solutions that in the average case are far from being optimal. In this paper, we present a … Read more

Primal-Dual Entropy Based Interior-Point Algorithms for Linear Optimization

We propose a family of search directions based on primal-dual entropy in the context of interior-point methods for linear optimization. We show that by using entropy based search directions in the predictor step of a predictor-corrector algorithm together with a homogeneous self-dual embedding, we can achieve the current best iteration complexity bound for linear optimization. … Read more

The Value of Flexibility in Robust Location-Transportation Problems

This article studies a multi-period capacitated fixed-charge location-transportation problem in which, while the location and capacity of each facility need to be determined immediately, the determination of final production and distribution of products can be delayed until actual orders are received in each period. In contexts where little is known about future demand, robust optimization, … Read more

Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming

We propose a framework to model general guillotine restrictions in two-dimensional cutting problems formulated as Mixed Integer Linear Programs (MIP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within … Read more

Worst-case evaluation complexity of regularization methods for smooth unconstrained optimization using Hölder continuous gradients

The worst-case behaviour of a general class of regularization algorithms is considered in the case where only objective function values and associated gradient vectors are evaluated. Upper bounds are derived on the number of such evaluations that are needed for the algorithm to produce an approximate first-order critical point whose accuracy is within a user-defined … Read more

On the Coherent Risk Measure Representations in the Discrete Probability Spaces

We give a complete characterization of both comonotone and not comonotone coherent risk measures in the discrete finite probability space, where each outcome is equally likely. To the best of our knowledge, this is the first work that characterizes and distinguishes comonotone and not comonotone coherent risk measures via a simplified AVaR representation in this … Read more

Convergence analysis for Lasserre’s measure–based hierarchy of upper bounds for polynomial optimization

We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-􀀀885], obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so that … Read more

Error Bounds and Holder Metric Subregularity

The Holder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Holder metric subregularity criteria is presented. The criteria are formulated in terms of several … Read more

Solving Power-Constrained Gas Transportation Problems using an MIP-based Alternating Direction Method

We present a solution algorithm for problems from steady-state gas transport optimization. Due to nonlinear and nonconvex physics and engineering models as well as discrete controllability of active network devices, these problems lead to hard nonconvex mixed-integer nonlinear optimization models. The proposed method is based on mixed-integer linear techniques using piecewise linear relaxations of the … Read more