The Many Faces of Degeneracy in Conic Optimization

Slater’s condition — existence of a “strictly feasible solution” — is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact … Read more

Subdifferentiation and Smoothing of Nonsmooth Integral Functionals

The subdifferential calculus for the expectation of nonsmooth random integrands involves many fundamental and challenging problems in stochastic optimization. It is known that for Clarke regular integrands, the Clarke subdifferential equals the expectation of their Clarke subdifferential. In particular, this holds for convex integrands. However, little is known about calculation of Clarke subgradients for the … Read more

Convergence and Complexity Analysis of a Levenberg-Marquardt Algorithm for Inverse Problems

The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under … Read more

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm

Interior-point methods have been shown to be very efficient for large-scale nonlinear programming. The combination with penalty methods increases their robustness due to the regularization of the constraints caused by the penalty term. In this paper a primal-dual penalty-interior-point algorithm is proposed, that is based on an augmented Lagrangian approach with an l2-exact penalty function. … Read more

Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming

Unit commitment (UC) is a key operational problem in power systems used to determine an optimal daily or weekly generation commitment schedule. Incorporating uncertainty in this already difficult mixed integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning … Read more

A Multilevel Model of the European Entry-Exit Gas Market

In entry-exit gas markets as they are currently implemented in Europe, network constraints do not affect market interaction beyond the technical capacities determined by the TSO that restrict the quantities individual firms can trade at the market. It is an up to now unanswered question to what extent existing network capacity remains unused in an … Read more

Stability and accuracy of Inexact Interior Point methods for convex quadratic programming

We consider primal-dual IP methods where the linear system arising at each iteration is formulated in the reduced (augmented) form and solved approximately. Focusing on the iterates close to a solution, we analyze the accuracy of the so-called inexact step, i.e., the step that solves the unreduced system, when combining the effects of both different … Read more

The uncapacitated p-hub center problem under the existence of zero flows

In this study, we consider the special case of the uncapacitated p-hub center problem, where the weight/flow matrix includes 0 entities. In some real life networks, such as airline networks, cargo networks etc., the zero flow might exist between certain demand points. Typically in airline networks, nobody travels from city i to city i. In … Read more

On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize

In this paper, we extend the improved pointwise iteration-complexity result of a dynamic regularized alternating direction method of multipliers (ADMM) for a new stepsize domain. In this complexity analysis, the stepsize parameter can even be chosen in the interval $(0,2)$ instead of interval $(0,(1+\sqrt{5})/2)$. As usual, our analysis is established by interpreting this ADMM variant … Read more

Warm-start of interior point methods for second order cone optimization via rounding over optimal Jordan frames

Interior point methods (IPM) are the most popular approaches to solve Second Order Cone Optimization (SOCO) problems, due to their theoretical polynomial complexity and practical performance. In this paper, we present a warm-start method for primal-dual IPMs to reduce the number of IPM steps needed to solve SOCO problems that appear in a Branch and … Read more