On robust fractional 0-1 programming

We study single- and multiple-ratio robust fractional 0-1 programming problems (RFPs). In particular, this work considers RFPs under a wide-range of disjoint and joint uncertainty sets, where the former implies separate uncertainty sets for each numerator and denominator, and the latter accounts for different forms of inter-relatedness between them. First, we demonstrate that, unlike the … Read more

Optimizing Package Express Operations in China

We explore optimization models to support the planning and operations functions at package express carriers in China. The models simultaneously consider ground and air transportation, company-owned and purchased capacity, multiple service products, and shipments becoming available throughout the day. An extensive computational study using real-life data shows the efficacy of the models, provides insights into … Read more

A mixed-integer fractional optimization approach to best subset selection

We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We show that, for a broad range of criteria used in the statistics literature, the best subset selection problem can be modeled as … Read more

Risk averse stochastic programming: time consistency and optimal stopping

Bellman formulated a vague principle for optimization over time, which characterizes optimal policies by stating that a decision maker should not regret previous decisions retrospectively. This paper addresses time consistency in stochastic optimization. The problem is stated in generality first. The paper discusses time consistent decision-making by addressing risk measures which are recursive, nested, dynamically … Read more

A multi-stage stochastic integer programming approach for a multi-echelon lot-sizing problem with returns and lost sales

We consider an uncapacitated multi-item multi-echelon lot-sizing problem within a remanufacturing system involving three production echelons: disassembly, refurbishing and reassembly. We seek to plan the production activities on this system over a multi-period horizon. We consider a stochastic environment, in which the input data of the optimization problem are subject to uncertainty. We propose a … Read more

Location and Capacity Planning of Facilities with General Service-Time Distributions Using Conic Optimization

This paper studies a stochastic congested location problem in the network of a service system that consists of facilities to be established in a finite number of candidate locations. Population zones allocated to each open service facility together creates a stream of demand that follows a Poisson process and may cause congestion at the facility. … Read more

Conditional Extragradient Algorithms for Solving Constrained Variational Inequalities

In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing non-null normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearches. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that non-null normal vectors may significantly improve convergence … Read more

On Subadditive Duality for Conic Mixed-Integer Programs

In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known … Read more

Decomposition Branching for Mixed Integer Programming

We introduce a novel and powerful approach for solving certain classes of mixed integer programs (MIPs): decomposition branching. Two seminal and widely used techniques for solving MIPs, branch-and-bound and decomposition, form its foundation. Computational experiments with instances of a weighted set covering problem and a regionalized p-median facility location problem with assignment range constraints demonstrate … Read more

A Partial PPA block-wise ADMM for Multi-Block Constrained Separable Convex Optimization

The alternating direction method of multipliers(ADMM) has been proved to be effective for solving two-block separable convex optimization subject to linear constraints. However, it is not necessarily convergent when it is extended to multiple-block case directly. One remedy could be regrouping multiple-block variables into two groups firstly and then adopting the classic ADMM to the … Read more