Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

Decomposing the Train Scheduling Problem into Integer Optimal Polytopes

This paper presents conditions for which the linear relaxation for the train scheduling problem is integer-optimal. These conditions are then used to identify how to partition a general problem’s feasible region into integer-optimal polytopes. Such an approach yields an extended formulation that contains far fewer binary variables. Our computational experiments show that this approach results … Read more

A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization.

A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tuncel. We specialize Tuncel’s primal-dual scalings for the important case of 3 dimensional exponential-cones, resulting in … Read more

The Fuel Replenishment Problem:A Split-Delivery Multi-Compartment Vehicle Routing Problem with Multiple Trips

In this paper, we formally define and model the Fuel Replenishment Problem (FRP). The FRP is a multi-compartment, multi-trip, split-delivery VRP in which tanker trucks transport different types of petrol, separated over multiple vehicle compartments, from an oil depot to petrol stations. Large customer demands often necessitate multiple deliveries. Throughout a single working day, a … Read more

Acceleration of SVRG and Katyusha X by Inexact Preconditioning

Empirical risk minimization is an important class of optimization problems with many popular machine learning applications, and stochastic variance reduction methods are popular choices for solving them. Among these methods, SVRG and Katyusha X (a Nesterov accelerated SVRG) achieve fast convergence without substantial memory requirement. In this paper, we propose to accelerate these two algorithms … Read more

Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms

Matrix Factorization is a popular non-convex objective, for which alternating minimization schemes are mostly used. They usually suffer from the major drawback that the solution is biased towards one of the optimization variables. A remedy is non-alternating schemes. However, due to a lack of Lipschitz continuity of the gradient in matrix factorization problems, convergence cannot … Read more

Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system

Published in Journal of Global Optimization. https://doi.org/10.1007/s10898-021-01041-y We develop a stochastic optimization model for scheduling a hybrid solar-battery storage system. Solar power in excess of the promise can be used to charge the battery, while power short of the promise is met by discharging the battery. We ensure reliable operations by using a joint chance … Read more

Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets

We consider the problem of computing the minimum value of a polynomial f over a compact set K⊆R^n, which can be reformulated as finding a probability measure ν on K minimizing the expected value of f over K. Lasserre showed that it suffices to consider such measures of the form ν=qμ, where q is a … Read more

On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm

Recently, Kronqvist et al.rediscovered the supporting hyperplane algorithm of Veinott and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm applied to a particular … Read more