Tangencies and Polynomial Optimization

Given a polynomial function $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ and a unbounded basic closed semi-algebraic set $S \subset \mathbb{R}^n,$ in this paper we show that the conditions listed below are characterized exactly in terms of the so-called {\em tangency variety} of $f$ on $S$: (i) The $f$ is bounded from below on $S;$ (ii) The … Read more

Identifying the Optimal Value Function of a Negative Markov Decision Process: An Integer Programming Approach

Mathematical programming formulation to identify the optimal value function of a negative Markov decision process (MDP) is non-convex, non-smooth, and computationally intractable. Also note that other well-known solution methods of MDP do not work properly for a negative MDP. More specifically, the policy iteration diverges, and the value iteration converges but does not provide an … Read more

Minimum Color-Degree Perfect b -Matchings

The minimum color-degree perfect b-matching roblem (Col-BM) is a new extension of the perfect b-matching problem to edge-colored graphs. The objective of Col-BM is to minimize the maximum number of differently colored edges in a perfect b-matching that are incident to the same node. We show that Col-BM is NP-hard on bipartite graphs by a … Read more

Algorithms for the circle packing problem based on mixed-integer DC programming

Circle packing problems are a class of packing problems which attempt to pack a given set of circles into a container with no overlap. In this paper, we focus on the circle packing problem proposed by L{\’o}pez et.al. The problem is to pack circles of unequal size into a fixed size circular container, so as … Read more

Single cut and multicut SDDP with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments

We introduce a variant of Multicut Decomposition Algorithms (MuDA), called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates a class of cut selection strategies to choose the most relevant cuts of the approximate recourse functions. This class contains Level 1 and Limited Memory Level 1 cut selection strategies, … Read more

An Adaptive Sequential Sample Average Approximation Framework for Solving Two-stage Stochastic Programs

We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale two-stage stochastic linear programs. The iterative algorithm framework we propose is organized into \emph{outer} and \emph{inner} iterations as follows: during each outer iteration, a sample-path problem is implicitly generated using a sample of observations or “scenarios,” and solved only \emph{imprecisely}, to within a … Read more

Improved Flow-based Formulations for the Skiving Stock Problem

Thanks to the rapidly advancing development of (commercial) MILP software and hardware components, pseudo-polynomial formulations have been established as a powerful tool for solving cutting and packing problems in recent years. In this paper, we focus on the one-dimensional skiving stock problem (SSP), where a given inventory of small items has to be recomposed to … Read more

Optimal Residential Battery Storage Operations Using Robust Data-driven Dynamic Programming

In this paper, we consider the problem of operating a battery storage unit in a home with a rooftop solar photovoltaic (PV) system so as to minimize expected long-run electricity costs under uncertain electricity usage, PV generation, and electricity prices. Solving this dynamic program using standard techniques is computationally burdensome, and is often complicated by … Read more

Conflict-Driven Heuristics for Mixed Integer Programming

Two essential ingredients of modern mixed-integer programming (MIP) solvers are diving heuristics that simulate a partial depth-first search in a branch-and-bound search tree and conflict analysis of infeasible subproblems to learn valid constraints. So far, these techniques have mostly been studied independently: primal heuristics under the aspect of finding high-quality feasible solutions early during the … Read more

A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary fi rst and second stage variables

In this paper, we propose a generalized Benders decomposition-based branch and cut algorithm for solving two stage stochastic mixed-integer nonlinear programs (SMINLPs) with mixed binary rst and second stage variables. At a high level, the proposed decomposition algorithm performs spatial branch and bound search on the rst stage variables. Each node in the branch and … Read more