Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. Article Download View Distributionally Robust Modeling of Optimal Control

A minibatch stochastic Quasi-Newton method adapted for nonconvex deep learning problems

In this study, we develop a limited memory nonconvex Quasi-Newton (QN) method, tailored to deep learning (DL) applications. Since the stochastic nature of (sampled) function information in minibatch processing can affect the performance of QN methods, three strategies are utilized to overcome this issue. These involve a novel progressive trust-region radius update (suitable for stochastic … Read more

Shattering Inequalities for Learning Optimal Decision Trees

Recently, mixed-integer programming (MIP) techniques have been applied to learn optimal decision trees. Empirical research has shown that optimal trees typically have better out-of-sample performance than heuristic approaches such as CART. However, the underlying MIP formulations often suffer from slow runtimes, due to weak linear programming (LP) relaxations. In this paper, we first propose a … Read more

An MISOCP-Based Decomposition Approach for the Unit Commitment Problem with AC Power Flows

Unit Commitment (UC) and Optimal Power Flow (OPF) are two fundamental problems in short-term electric power systems planning that are traditionally solved sequentially. The state-of-the-art mostly uses a direct current flow approximation of the power flow equations in the UC-level and the generator commitments obtained are sent as input to the OPF-level. However, such an … Read more

Inexact Restoration for Minimization with Inexact Evaluation both of the Objective Function and the Constraints

In a recent paper an Inexact Restoration method for solving continuous constrained optimization problems was analyzed from the point of view of worst-case functional complexity and convergence. On the other hand, the Inexact Restoration methodology was employed, in a different research, to handle minimization problems with inexact evaluation and simple constraints. These two methodologies are … Read more

Chance constrained nonlinear optimization with skewed distributions and dependent rows

This paper discusses chance constrained optimization problems where the constraints are linear to the random variables but nonlinear to the decision variables. For the individual nonlinear chance constraint, we derive tractable reformulation under finite Gaussian mixture distributions and design tight approximation under the generalized hyperbolic distribution. For the joint nonlinear chance constraint, we study several … Read more

A Trust Region Method for the Optimization of Noisy Functions

Classical trust region methods were designed to solve problems in which function and gradient information are exact. This paper considers the case when there are bounded errors (or noise) in the above computations and proposes a simple modification of the trust region method to cope with these errors. The new algorithm only requires information about … Read more

Time-series aggregation for the optimization of energy systems: goals, challenges, approaches, and opportunities

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect … Read more

On the convex hull of convex quadratic optimization problems with indicators

We consider the convex quadratic optimization problem with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of a single positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of … Read more

An Algorithm for Stochastic Convex-Concave Fractional Programs with Applications to Production Efficiency and Equitable Resource Allocation

We propose an algorithm to solve convex and concave fractional programs and their stochastic counterparts in a common framework. Our approach is based on a novel reformulation that involves differences of square terms in the constraints, and subsequent employment of piecewise-linear approximations of the concave terms. Using the branch-and-bound (B&B) framework, our algorithm adaptively refines … Read more