A Sparse Interior Point Method for Linear Programs arising in Discrete Optimal Transport

Discrete Optimal Transport problems give rise to very large linear programs (LP) with a particular structure of the constraint matrix. In this paper we present an interior point method (IPM) specialized for the LP originating from the Kantorovich Optimal Transport problem. Knowing that optimal solutions of such problems display a high degree of sparsity, we … Read more

Learning to Use Local Cuts

An essential component in modern solvers for mixed-integer (linear) programs (MIPs) is the separation of additional inequalities (cutting planes) to tighten the linear programming relaxation. Various algorithmic decisions are necessary when integrating cutting plane methods into a branch-and-bound (B&B) solver as there is always the trade-off between the efficiency of the cuts and their costs, … Read more

Minimum-Link Covering Trails for any Hypercubic Lattice

In 1994, Kranakis et al. published a conjecture about the minimum link-length of every rectilinear covering path for the \(k\)-dimensional grid \(P(n,k) := \{0,1, \dots, n-1\} \times \{0,1, \dots, n-1\} \times \cdots \times \{0,1, \dots, n-1\}\). In this paper, we consider the general, NP-complete, Line-Cover problem, where the edges are not required to be axis-parallel, … Read more

Planning of Container Crossdocking for an Express Shipment Service Network

In air transportation, container crossdocking refers to a loaded container that is transferred at an airport from an incoming flight to an outgoing flight without handling the freight on the container. It reduces handling time and handling cost relative to unloading the container and sorting the freight, and is an economical alternative if a sufficient … Read more

Convergence to a second-order critical point of composite nonsmooth problems by a trust region method

An algorithm for finding a first-order and second-order critical point of composite nonsmooth problems is proposed in this paper. For smooth problems, algorithms for searching such a point usually utilize the so called negative-curvature directions. In this paper, the method recently proposed for nonlinear semidefinite problems by the current author is extended for solving general … Read more

Detecting negative eigenvalues of exact and approximate Hessian matrices in optimization

Nonconvex minimization algorithms often benefit from the use of second-order information as represented by the Hessian matrix. When the Hessian at a critical point possesses negative eigenvalues, the corresponding eigenvectors can be used to search for further improvement in the objective function value. Computing such eigenpairs can be computationally challenging, particularly if the Hessian matrix … Read more

On the convergence of iterative schemes for solving a piecewise linear system of equations

This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration … Read more

Solving the n_1 × n_2 × n_3 Points Problem for n_3 < 6

In this paper, we show enhanced upper bounds of the nontrivial \(n_1 \times n_2 \times n_3\) points problem for every \(n_1 \leq n_2 \leq n_3 < 6\). We present new patterns that significantly improve the previously known algorithms for finding minimum-link covering paths and trails. CitationAn old version of the present paper has been published … Read more

Faster Lagrangian-based methods: a unified prediction-correction framework

Motivated by the prediction-correction framework constructed by He and Yuan [SIAM J. Numer. Anal. 50: 700-709, 2012], we propose a unified prediction-correction framework to accelerate Lagrangian-based methods. More precisely, for strongly convex optimization, general linearized Lagrangian method with indefinite proximal term, alternating direction method of multipliers (ADMM) with the step size of Lagrangian multiplier not … Read more

Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more