Generic identifiability and second-order sufficiency in tame convex optimization

We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, “tame”). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is “partly smooth”, ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions … Read more

Identifying Activity

Identification of active constraints in constrained optimization is of interest from both practical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting of composite nonsmooth minimization, in which the objective is a … Read more

Nonsmooth Optimization via BFGS

We investigate the BFGS algorithm with an inexact line search when applied to nonsmooth functions, not necessarily convex. We define a suitable line search and show that it generates a sequence of nested intervals containing points satisfying the Armijo and weak Wolfe conditions, assuming only absolute continuity. We also prove that the line search terminates … Read more

Behavior of BFGS with an Exact Line Search on Nonsmooth Examples

We investigate the behavior of the BFGS algorithm with an exact line search on nonsmooth functions. We show that it may fail on a simple polyhedral example, but that it apparently always succeeds on the Euclidean norm function, spiraling into the origin with a Q-linear rate of convergence; we prove this in the case of … Read more

A proximal method for composite minimization

We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algorithmic framework based on a subproblem constructed from a linearized approximation to the objective and a regularization term. Properties of local solutions … Read more

Lipschitz behavior of the robust regularization

To minimize or upper-bound the value of a function “robustly”, we might instead minimize or upper-bound the “epsilon-robust regularization”, defined as the map from a point to the maximum value of the function within an epsilon-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius … Read more

Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more

The Speed of Shor’s R-Algorithm

Shor’s r-algorithm is an iterative method for unconstrained optimization, designed for minimizing nonsmooth functions, for which its reported success has been considerable. Although some limited convergence results are known, nothing seems to be known about the algorithm’s rate of convergence, even in the smooth case. We study how the method behaves on convex quadratics, proving … Read more

Alternating projections on manifolds

We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersection problem, a natural measure of conditioning. … Read more

Analysis of a Belgian Chocolate Stabilization Problem

We give a detailed numerical and theoretical analysis of a stabilization problem posed by V. Blondel in 1994. Our approach illustrates the effectiveness of a new gradient sampling algorithm for finding local optimizers of nonsmooth, nonconvex optimization problems arising in control, as well as the power of nonsmooth analysis for understanding variational problems involving polynomial … Read more