Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

Bilevel Programming and the Separation Problem

In recent years, branch-and-cut algorithms have become firmly established as the most effective method for solving generic mixed integer linear programs (MILPs). Methods for automatically generating inequalities valid for the convex hull of solutions to such MILPs are a critical element of branch-and-cut. This paper examines the nature of the so-called separation problem, which is … Read more

Interdiction Branching

This paper introduces interdiction branching, a new branching method for binary integer programs that is designed to overcome the difficulties encountered in solving problems for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes into account the best feasible solution found so far. In particular, the … Read more

An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming

We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound … Read more

Efficient and Fair Routing for Mesh Networks

Inspired by the One Laptop Per Child project, we consider mesh networks that connect devices that cannot recharge their batteries easily. We study how the mesh should retransmit information to make use of the energy stored in each of the nodes effectively. The solution that minimizes the total energy spent by the whole network may … Read more

A Time Bucket Formulation for the TSP with Time Windows

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a minimum-cost path visiting a set of cities exactly once, where each city must be visited within a given time window. We present an extended formulation for the problem based on partitioning the time windows into sub-windows, which we call “buckets”. We … Read more

Water Network Design by MINLP

We propose a solution method for a water-network optimization problem using a nonconvex continuous NLP (nonlinear programming) relaxation and a MINLP (mixed integer nonlinear programming) search. Our approach employs a relatively simple and accurate model that pays some attention to the requirements of the solvers that we employ. Our view is that in doing so, … Read more

MIR Closures of Polyhedral Sets

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR closure of a polyhedral set is equal to its split closure and the associated separation problem is NP-hard. We describe a mixed-integer programming (MIP) model with linear constraints and a non-linear objective for separating an arbitrary point from the MIR closure of a … Read more

A Feasibility Pump for Mixed Integer Nonlinear Programs

We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within … Read more

An algorithmic framework for convex mixed integer nonlinear programs

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent … Read more