An algorithm for assortment optimization under parametric discrete choice models

This work concerns the assortment optimization problem that refers to selecting a subset of items that maximizes the expected revenue in the presence of the substitution behavior of consumers specified by a parametric choice model. The key challenge lies in the computational difficulty of finding the best subset solution, which often requires exhaustive search. The … Read more

A note on the Lasserre hierarchy for different formulations of the maximum independent set problem

In this note, we consider several polynomial optimization formulations of the max- imum independent set problem and the use of the Lasserre hierarchy with these different formulations. We demonstrate using computational experiments that the choice of formulation may have a significant impact on the resulting bounds. We also provide theoretical justifications for the observed behavior. … Read more

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

We translate the algorithmic question of whether to linearize convex Mixed-Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by careful target and feature engineering. Computational experiments and evaluation metrics are designed to further incorporate the optimization knowledge in … Read more

Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound

This paper offers a novel approach for computing globally optimal solutions to the pump scheduling problem in drinking water distribution networks. A tight integer linear relaxation of the original non-convex formulation is devised and solved by branch and bound where integer nodes are investigated through non-linear programming to check the satisfaction of the non-convex constraints … Read more

On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming

The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens … Read more

Single Allocation Hub Location with Heterogeneous Economies of Scale

We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an integer non-linear program, which we then … Read more

A decentralized framework for the optimal coordination of distributed energy resources

Demand-response aggregators are faced with the challenge of how to best manage numerous and heterogeneous Distributed Energy Resources (DERs). This paper proposes a decentralized methodology for optimal coordination of DERs. The proposed approach is based on Dantzig-Wolfe decomposition and column generation, thus allowing to integrate any type of resource whose operation can be formulated within … Read more

Partially-Ranked Choice Models for Data-Driven Assortment Optimization

The assortment of products carried by a store has a crucial impact on its success. However, finding the right mix of products to attract a large portion of the customers is a challenging task. Several mathematical models have been proposed to optimize assortments. In particular, rank-based choice models have been acknowledged for representing well high-dimensional … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

Single-Commodity Robust Network Design with Finite and Hose Demand Sets

We study a single-commodity Robust Network Design problem (sRND) defined on an undirected graph. Our goal is to determine minimum cost capacities such that any traffic demand from a given uncertainty set can be satisfied by a feasible single-commodity flow. We consider two ways of representing the uncertainty set, either as a finite list of … Read more