Revisiting local branching with a machine learning lens

Finding high-quality solutions to mixed-integer linear programming problems (MILPs) is of great importance for many practical applications. In this respect, the refinement heuristic local branching (LB) has been proposed to produce improving solutions and has been highly influential for the development of local search methods in MILP. The algorithm iteratively explores a sequence of solution … Read more

A solution algorithm for chance-constrained problems with integer second-stage recourse decisions

We study a class of chance-constrained two-stage stochastic optimization problems where the second-stage recourse decisions belong to mixed-integer convex sets. Due to the nonconvexity of the second-stage feasible sets, standard decomposition approaches cannot be applied. We develop a provably convergent branch-and-cut scheme that iteratively generates valid inequalities for the convex hull of the second-stage feasible … Read more

Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

Fairness over Time in Dynamic Resource Allocation with an Application in Healthcare

Decision making problems are typically concerned with maximizing efficiency. In contrast, we address problems where there are multiple stakeholders and a centralized decision maker who is obliged to decide in a fair manner. Different decisions give different utility to each stakeholder. In cases where these decisions are made repeatedly, we provide efficient mathematical programming formulations … Read more

Measures of Balance in Combinatorial Optimization

The concept of balance plays an important role in many combinatorial optimization problems. Yet there exist various ways of expressing balance, and it is not always obvious how best to achieve it. In this methodology-focused paper, we study three cases where its integration is deficient and analyze the causes of these inadequacies. We examine the … Read more

An algorithm for assortment optimization under parametric discrete choice models

This work concerns the assortment optimization problem that refers to selecting a subset of items that maximizes the expected revenue in the presence of the substitution behavior of consumers specified by a parametric choice model. The key challenge lies in the computational difficulty of finding the best subset solution, which often requires exhaustive search. The … Read more

A note on the Lasserre hierarchy for different formulations of the maximum independent set problem

In this note, we consider several polynomial optimization formulations of the max- imum independent set problem and the use of the Lasserre hierarchy with these different formulations. We demonstrate using computational experiments that the choice of formulation may have a significant impact on the resulting bounds. We also provide theoretical justifications for the observed behavior. … Read more

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

We translate the algorithmic question of whether to linearize convex Mixed-Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by careful target and feature engineering. Computational experiments and evaluation metrics are designed to further incorporate the optimization knowledge in … Read more

Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound

This paper offers a novel approach for computing globally optimal solutions to the pump scheduling problem in drinking water distribution networks. A tight integer linear relaxation of the original non-convex formulation is devised and solved by branch and bound where integer nodes are investigated through non-linear programming to check the satisfaction of the non-convex constraints … Read more