Optimization-based Scenario Reduction for Data-Driven Two-stage Stochastic Optimization

We propose a novel, optimization-based method that takes into account the objective and problem structure for reducing the number of scenarios, m, needed for solving two-stage stochastic optimization problems. We develop a corresponding convex optimization-based algorithm, and show that as the number of scenarios increase, the proposed method recovers the SAA solution. We report computational … Read more

Mixed-Integer Optimization with Constraint Learning

We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including … Read more

Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach

We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, … Read more

A new perspective on low-rank optimization

A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function — the matrix analog of the perspective function — and characterize explicitly … Read more

Hospital-wide Inpatient Flow Optimization

An ideal that supports quality and delivery of care is to have hospital operations that are coordinated and optimized across all services in real-time. As a step toward this goal, we propose a multistage adaptive robust optimization approach combined with machine learning techniques. Informed by data and predictions, our framework unifies the bed assignment process … Read more

Pareto Adaptive Robust Optimality via a Fourier-Motzkin Elimination Lens

We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear Adaptive Robust Optimization (ARO) problems. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another such pair that performs at least as good in all … Read more

Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

We propose a framework for modeling and solving low-rank optimization problems to certifiable optimality. We introduce symmetric projection matrices that satisfy $Y^2 = Y$, the matrix analog of binary variables that satisfy $z^2 = z$, to model rank constraints. By leveraging regularization and strong duality, we prove that this modeling paradigm yields tractable convex optimization … Read more

Robust Convex Optimization: A New Perspective That Unifies And Extends

Robust convex constraints are difficult to handle, since finding the worst-case scenario is equivalent to maximizing a convex function. In this paper, we propose a new approach to deal with such constraints that unifies approaches known in the literature and extends them in a significant way. The extension is either obtaining better solutions than the … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more

On Polyhedral and Second-Order-Cone Decompositions of Semidefinite Optimization Problems

We study a cutting-plane method for semidefinite optimization problems (SDOs), and supply a proof of the method’s convergence, under a boundedness assumption. By relating the method’s rate of convergence to an initial outer approximation’s diameter, we argue that the method performs well when initialized with a second-order-cone approximation, instead of a linear approximation. We invoke … Read more