Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

Derivative-free Robust Optimization for Circuit Design

In this paper, we introduce a framework for derivative-free robust optimization based on the use of an efficient derivative-free optimization routine for mixed integer nonlinear problems. The proposed framework is employed to find a robust optimal design of a particular integrated circuit (namely a DC-DC converter commonly used in portable electronic devices). The proposed robust … Read more

On the use of iterative methods in cubic regularization for unconstrained optimization

In this paper we consider the problem of minimizing a smooth function by using the Adaptive Cubic Regularized framework (ARC). We focus on the computation of the trial step as a suitable approximate minimizer of the cubic model and discuss the use of matrix-free iterative methods. Our approach is alternative to the implementation proposed in … Read more

A Linesearch-based Derivative-free Approach for Nonsmooth Optimization

In this paper, we propose new linesearch-based methods for nonsmooth optimization problems when first-order information on the problem functions is not available. In the first part, we describe a general framework for bound-constrained problems and analyze its convergence towards stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider inequality constrained optimization … Read more

Derivative-free methods for constrained mixed-integer optimization

We consider the problem of minimizing a continuously di erentiable function of several variables subject to simple bound and general nonlinear inequality constraints, where some of the variables are restricted to take integer values. We assume that the rst order derivatives of the objective and constraint functions can be neither calculated nor approximated explicitly. This class … Read more

DERIVATIVE-FREE METHODS FOR BOUND CONSTRAINED MIXED-INTEGER OPTIMIZATION

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems … Read more

A modified DIRECT algorithm for a problem in astrophysics

We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more