A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach … Read more

A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of … Read more

Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators

We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the … Read more

A Class of Randomized Primal-Dual Algorithms for Distributed Optimization

Based on a preconditioned version of the randomized block-coordinate forward-backward algorithm recently proposed in [Combettes,Pesquet,2014], several variants of block-coordinate primal-dual algorithms are designed in order to solve a wide array of monotone inclusion problems. These methods rely on a sweep of blocks of variables which are activated at each iteration according to a random rule, … Read more

Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however … Read more

Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping

This work investigates the properties of stochastic quasi-Fejér monotone sequences in Hilbert spaces and emphasizes their pertinence in the study of the convergence of block-coordinate fixed point methods. The iterative methods under investigation feature random sweeping rules to select the blocks of variables that are activated over the course of the iterations and allow for … Read more

A Block Coordinate Variable Metric Forward-Backward Algorithm

A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non … Read more

Variable Metric Forward-Backward algorithm for minimizing the sum of a differentiable function and a convex function

We consider the minimization of a function $G$ defined on $R^N$, which is the sum of a (non necessarily convex) differentiable function and a (non necessarily differentiable) convex function. Moreover, we assume that $G$ satisfies the Kurdyka-Lojasiewicz property. Such a problem can be solved with the Forward-Backward algorithm. However, the latter algorithm may suffer from … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

A VARIATIONAL FORMULATION FOR FRAME-BASED INVERSE PROBLEMS

A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well … Read more