Variational Analysis of the Crouzeix Ratio

Let $W(A)$ denote the field of values (numerical range) of a matrix $A$. For any polynomial $p$ and matrix $A$, define the Crouzeix ratio to have numerator $\max\left\{|p(\zeta)|:\zeta\in W(A)\right\}$ and denominator $\|p(A)\|_2$. M.~Crouzeix’s 2004 conjecture postulates that the globally minimal value of the Crouzeix ratio is $1/2$, over all polynomials $p$ of any degree and … Read more

A BFGS-SQP Method for Nonsmooth, Nonconvex, Constrained Optimization and its Evaluation using Relative Minimization Profiles

We propose an algorithm for solving nonsmooth, nonconvex, constrained optimization problems as well as a new set of visualization tools for comparing the performance of optimization algorithms. Our algorithm is a sequential quadratic optimization method that employs Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Hessian approximations and an exact penalty function whose parameter is controlled using a steering strategy. … Read more

Polynomial Root Radius Optimization with Affine Constraints

The root radius of a polynomial is the maximum of the moduli of its roots (zeros). We consider the following optimization problem: minimize the root radius over monic polynomials of degree $n$, with either real or complex coefficients, subject to $k$ consistent affine constraints on the coefficients. We show that there always exists an optimal … Read more

Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

Variational Analysis of the Spectral Abscissa at a Matrix with a Nongeneric Multiple Eigenvalue

The spectral abscissa is a fundamental map from the set of complex matrices to the real numbers. Denoted $\alpha$ and defined as the maximum of the real parts of the eigenvalues of a matrix $X$, it has many applications in stability analysis of dynamical systems. The function $\alpha$ is nonconvex and is non-Lipschitz near matrices … Read more

The Spectral Bundle Method with Second-Order Information

The spectral bundle method was introduced by Helmberg and Rendl to solve a class of eigenvalue optimization problems that is equivalent to the class of semidefinite programs with the constant trace property. We investigate the feasibility and effectiveness of including full or partial second-order information in the spectral bundle method, building on work of Overton … Read more

Explicit Solutions for Root Optimization of a Polynomial Family with One Affine Constraint

Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as … Read more

SOME REGULARITY RESULTS FOR THE PSEUDOSPECTRAL ABSCISSA AND PSEUDOSPECTRAL RADIUS OF A MATRIX

The $\epsilon$-pseudospectral abscissa $\alpha_\epsilon$ and radius $\rho_\epsilon$ of an n x n matrix are respectively the maximal real part and the maximal modulus of points in its $\epsilon$-pseudospectrum, defined using the spectral norm. It was proved in [A.S. Lewis and C.H.J. Pang. Variational analysis of pseudospectra. SIAM Journal on Optimization, 19:1048-1072, 2008] that for fixed … Read more

On Nesterov’s Nonsmooth Chebyschev-Rosenbrock Functions

We discuss two nonsmooth functions on R^n introduced by Nesterov. We show that the first variant is partly smooth in the sense of [A.S. Lewis. Active sets, nonsmoothness and sensitivity. SIAM Journal on Optimization, 13:702–725, 2003.] and that its only stationary point is the global minimizer. In contrast, we show that the second variant has … Read more

A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization

We consider optimization problems with objective and constraint functions that may be nonconvex and nonsmooth. Problems of this type arise in important applications, many having solutions at points of nondifferentiability of the problem functions. We present a line search algorithm for situations when the objective and constraint functions are locally Lipschitz and continuously differentiable on … Read more