Low-M-Rank Tensor Completion and Robust Tensor PCA

In this paper, we propose a new approach to solve low-rank tensor completion and robust tensor PCA. Our approach is based on some novel notion of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank. We discuss the connections between these new tensor ranks and the CP-rank and … Read more

Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

Robust PCA has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bio-informatics, statistics, and machine learning to image and video processing in computer vision. Robust PCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. … Read more

An ADMM-Based Interior-Point Method for Large-Scale Linear Programming

In this paper, we propose a new framework to implement interior point method (IPM) in order to solve some very large scale linear programs (LP). Traditional IPMs typically use Newton’s method to approximately solve a subproblem that aims to minimize a log-barrier penalty function at each iteration. Due its connection to Newton’s method, IPM is … Read more

Robust Principal Component Analysis using Facial Reduction

We study algorithms for robust principal component analysis (RPCA) for a partially observed data matrix. The aim is to recover the data matrix as a sum of a low-rank matrix and a sparse matrix so as to eliminate erratic noise (outliers). This problem is known to be NP-hard in general. A classical way to solve … Read more

Primal-Dual Optimization Algorithms over Riemannian Manifolds: an Iteration Complexity Analysis

In this paper we study nonconvex and nonsmooth multi-block optimization over Riemannian manifolds with coupled linear constraints. Such optimization problems naturally arise from machine learning, statistical learning, compressive sensing, image processing, and tensor PCA, among others. We develop an ADMM-like primal-dual approach based on decoupled solvable subroutines such as linearized proximal mappings. First, we introduce … Read more

Vector Transport-Free SVRG with General Retraction for Riemannian Optimization: Complexity Analysis and Practical Implementation

In this paper, we propose a vector transport-free stochastic variance reduced gradient (SVRG) method with general retraction for empirical risk minimization over Riemannian manifold. Existing SVRG methods on manifold usually consider a specific retraction operation, and involve additional computational costs such as parallel transport or vector transport. The vector transport-free SVRG with general retraction we … Read more

Geometric descent method for convex composite minimization

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh to tackle nonsmooth and strongly convex composite problems. We prove that our proposed algorithm, dubbed geometric proximal gradient method (GeoPG), converges with a linear rate $(1-1/\sqrt{\kappa})$ and thus achieves the optimal rate among first-order methods, where $\kappa$ is the … Read more

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle ($\SFO$). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case … Read more

Barzilai-Borwein Step Size for Stochastic Gradient Descent

One of the major issues in stochastic gradient descent (SGD) methods is how to choose an appropriate step size while running the algorithm. Since the traditional line search technique does not apply for stochastic optimization algorithms, the common practice in SGD is either to use a diminishing step size, or to tune a fixed step … Read more

Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis

Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its … Read more