Numerical Experiments with universal barrier functions for cones of Chebyshev systems

Based on previous explicit computations of universal barrier functions, we describe numerical experiments for solving certain classes of convex optimization problems. The comparison is given of the performance of the classical affine-scaling algorithm with similar algorithm based upon the universal barrier function CitationTo appear in “Computational Optimization and Applications”ArticleDownload View PDF

An extension of the standard polynomial-time primal-dual path-following algorithm to the weighted determinant maximization problem with semidefinite constraints

The problem of maximizing the sum of linear functional and several weighted logarithmic determinant (logdet) functions under semidefinite constraints is a generalization of the semidefinite programming (SDP) and has a number of applications in statistics and datamining, and other areas of informatics and mathematical sciences. In this paper, we extend the framework of standard primal-dual … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

Implementation of Infinite Dimensional Interior Point Method for Solving Multi-criteria Linear-Quadratic Control Problem

We describe an implementation of an infinite-dimensional primal-dual algorithm based on the Nesterov-Todd direction. Several applications to both continuous and discrete-time multi-criteria linear-quadratic control problems and linear-quadratic control problem with quadratic constraints are described. Numerical results show a very fast convergence (typically, within 3-4 iterations) to optimal solutions CitationPreprint, May, 2004, University of Notre DameArticleDownload … Read more

A New Computational Approach to Density Estimation with Semidefinite Programming

Density estimation is a classical and important problem in statistics. The aim of this paper is to develop a new computational approach to density estimation based on semidefinite programming (SDP), a new technology developed in optimization in the last decade. We express a density as the product of a nonnegative polynomial and a base density … Read more

Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank

We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone programs.” We consider as an example a … Read more

Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior Point Methods

Solving systems of linear equations with “normal” matrices of the form $A D^2 A^T$ is a key ingredient in the computation of search directions for interior-point algorithms. In this article, we establish that a well-known basis preconditioner for such systems of linear equations produces scaled matrices with uniformly bounded condition numbers as $D$ varies over … Read more

Optimal Magnetic Shield Design with Second-Order Cone Programming

In this paper, we consider a continuous version of the convex network flow problem which involves the integral of the Euclidean norm of the flow and its square in the objective function. A discretized version of this problem can be cast as a second-order cone program, for which efficient primal-dual interior-point algorithms have been developed … Read more

A new iteration-complexity bound for the MTY predictor-corrector algorithm

In this paper we present a new iteration-complexity bound for the Mizuno-Todd-Ye predictor-corrector (MTY P-C) primal-dual interior-point algorithm for linear programming. The analysis of the paper is based on the important notion of crossover events introduced by Vavasis and Ye. For a standard form linear program $\min\{c^Tx : Ax=b, \, x \ge 0\}$ with decision … Read more