On the String Averaging Method for Sparse Common Fixed Points Problems

We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a string-averaging algorithmic scheme that favorably handles the common fixed points problem when … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. Citation International Journal of Pure and Applied Mathematics, Vol. 46 (2008), … Read more

On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces

We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in … Read more

On linear infeasibility arising in intensity-modulated radiation therapy inverse planning

Intensity–modulated radiation therapy (IMRT) gives rise to systems of linear inequalities, representing the effects of radiation on the irradiated body. These systems are often infeasible, in which case one settles for an approximate solution, such as an {a,ß}–relaxation, meaning that no more than a percent of the inequalities are violated by no more than ß … Read more

On diagonally-relaxed orthogonal projection methods

We propose and study a block-iterative projections method for solving linear equations and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection … Read more

Perturbed projections and subgradient projections for the multiple-sets split feasibility problem

We study the multiple-sets split feasibility problem that requires to find a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. By casting the problem into an equivalent problem in … Read more

A unified approach for inversion problems in intensity-modulated radiation therapy

We propose and study a unified model for handling dose constraints (physical dose, equivalent uniform dose (EUD), etc.) and radiation source constraints in a single mathematical framework based on the split feasibility problem. The model does not impose on the constraints an exogenous objective (merit) function. The optimization algorithm minimizes a weighted proximity function that … Read more

The Application of an Oblique-Projected Landweber Method to a Model of Supervised Learning

This paper brings together a novel information representation model for use in signal processing and computer vision problems, with a particular algorithmic development of the Landweber iterative algorithm. The information representation model allows a representation of multiple values for a variable as well as expression of confidence. Both properties are important for effective computation using … Read more

The multiple-sets split feasibility problem and its applications for inverse problems

The multiple-sets split feasibility problem requires to find a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be a model for many inverse problems where constraints are … Read more

Computational acceleration of projection algorithms for the linear best approximation problem

This is an experimental computational account of projection algorithms for the linear best approximation problem. We focus on the sequential and simultaneous versions of Dykstra’s algorithm and the Halpern-Lions-Wittmann-Bauschke algorithm for the best approximation problem from a point to the intersection of closed convex sets in the Euclidean space. These algorithms employ different iterative approaches … Read more