On the Effectiveness of Projection Methods for Convex Feasibility

The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of … Read more

On String-Averaging for Sparse Problems and On the Split Common Fixed Point Problem

We review the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We present our recent definition of sparseness of a family of operators and discuss a string-averaging algorithmic scheme that favorably handles the common fixed points problem … Read more

A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin

In a recent paper by Strohmer and Vershynin (J. Fourier Anal. Appl. 15:262–278, 2009) a “randomized Kaczmarz algorithm” is proposed for solving consistent systems of linear equations {ai, x = bi }m i=1. In that algorithm the next equation to be used in an iterative Kaczmarz process is selected with a probability proportional to ai2. … Read more

Seminorm-induced oblique projections for sparse nonlinear convex feasibility problems

Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using generalized … Read more

Block-Iterative and String-Averaging Projection Algorithms in Proton Computed Tomography Image Reconstruction

Proton computed tomography (pCT) is an imaging modality that has been suggested as a means for reducing the range uncertainty during proton radiation treatments. By measuring the spatial location of individual protons pre- and post-patient, as well as the energy lost along the proton path, three dimensional maps of patient water equivalent electron densities can … Read more

Projections Onto Super-Half-Spaces for Monotone Variational Inequality Problems in Finite-Dimensional Spaces

The variational inequality problem (VIP) is considered here. We present a general algorithmic scheme which employs projections onto hyperplanes that separate balls from the feasible set of the VIP instead of projections onto the feasible set itself. Our algorithmic scheme includes the classical projection method and Fukushima’s subgradient projection method as special cases. CitationTechnical report: … Read more

On the String Averaging Method for Sparse Common Fixed Points Problems

We study the common fixed points problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a string-averaging algorithmic scheme that favorably handles the common fixed points problem when … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. CitationInternational Journal of Pure and Applied Mathematics, Vol. 46 (2008), pp. … Read more

On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces

We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in … Read more

On linear infeasibility arising in intensity-modulated radiation therapy inverse planning

Intensity–modulated radiation therapy (IMRT) gives rise to systems of linear inequalities, representing the effects of radiation on the irradiated body. These systems are often infeasible, in which case one settles for an approximate solution, such as an {a,ß}–relaxation, meaning that no more than a percent of the inequalities are violated by no more than ß … Read more