Membership testing for Bernoulli and tail-dependence matrices

Testing a given matrix for membership in the family of Bernoulli matrices is a longstanding problem, the many applications of Bernoulli vectors in computer science, finance, medicine, and operations research emphasize its practical relevance. A novel approach towards this problem was taken by [Fiebig et al., 2017] for lowdimensional settings d

Payment Mechanisms for Electricity Markets with Uncertain Supply

This paper provides a framework for deriving payment mechanisms for intermittent, flexible and inflexible electricity generators who are dispatched according to the optimal solution of a stochastic program that minimizes the expected cost of generation plus deviation. The first stage corresponds to a pre-commitment decision, and the second stage corresponds to real-time generation that adapts … Read more

Robust Utility Maximization with Drift and Volatility Uncertainty

We give explicit solutions for utility optimization problems in the presence of Knightian uncertainty in continuous time with nondominated priors and finite time horizon in a diffusion model. We assume that the uncertainty set is compact and time dependent on $[0,T]$. We solve the robust optimization problem explicitly both when the investor’s utility is of … Read more

Optimal Storage and Transmission Investments in a Bilevel Electricity Market Model

This paper analyzes the interplay of transmission and storage investments in a multistage game that we translate into a bilevel market model. In particular, on the first level we assume that a transmission system operator chooses an optimal line investment and a corresponding optimal network fee. On the second level we model competitive firms that … Read more

On the Effects of Storage Facilities on Optimal Zonal Pricing in Electricity Markets

This paper analyzes the effects of storage facilities on optimal zonal pricing in competitive electricity markets. In particular, we propose a zonal pricing model that comprises consumers, producers, and storage facilities on a network with constrained transmission capacities. In its two limit cases, our zonal pricing model includes the reference nodal pricing model as well … Read more

An Analytical Study of Norms and Banach Spaces Induced by the Entropic Value-at-Risk

This paper addresses the Entropic Value-at-Risk (EVaR), a recently introduced coherent risk measure. It is demonstrated that the norms induced by EVaR induce the same Banach spaces, irrespective of the confidence level. Three spaces, called the primal, dual, and bidual entropic spaces, corresponding with EVaR are fully studied. It is shown that these spaces equipped … Read more

An Augmented Lagrangian Proximal Alternating Method for Sparse Discrete Optimization Problems

In this paper, an augmented Lagrangian proximal alternating (ALPA) method is proposed for two class of large-scale sparse discrete constrained optimization problems in which a sequence of augmented Lagrangian subproblems are solved by utilizing proximal alternating linearized minimization framework and sparse projection techniques. Under the Mangasarian-Fromovitz and the basic constraint qualification, we show that any … Read more

Risk-based Loan Pricing: Portfolio Optimization Approach With Marginal Risk Contribution

We consider a lender (bank) who determines the optimal loan price (interest rates) to offer to prospective borrowers under uncertain risk and borrowers’ response. A borrower may or may not accept the loan at the price offered, and in the presence of default risk, both the principal loaned and the interest income become uncertain. We … Read more

High-dimensional risk-constrained dynamic asset allocation via Markov stochastic dual dynamic programming

Dynamic portfolio optimization has a vast literature exploring different simplifications by virtue of computational tractability of the problem. Previous works provide solution methods considering unrealistic assumptions, such as no transactional costs, small number of assets, specific choices of utility functions and oversimplified price dynamics. Other more realistic strategies use heuristic solution approaches to obtain suitable … Read more

Data-Driven Optimization of Reward-Risk Ratio Measures

We investigate a class of fractional distributionally robust optimization problems with uncertain probabilities. They consist in the maximization of ambiguous fractional functions representing reward-risk ratios and have a semi-infinite programming epigraphic formulation. We derive a new fully parameterized closed-form to compute a new bound on the size of the Wasserstein ambiguity ball. We design a … Read more