Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty, meaning that the MV efficient portfolios constructed with an estimate of the model parameters (i.e., the expected return vector and covariance of asset returns) can give very poor performance for another set of parameters that is similar and statistically hard to distinguish from the … Read more

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

This paper concerns a fractional function of the form $x^Ta/\sqrt{x^TBx}$, where $B$ is positive definite. We consider the game of choosing $x$ from a convex set, to maximize the function, and choosing $(a,B)$ from a convex set, to minimize it. We prove the existence of a saddle point and describe an efficient method, based on … Read more

Sample Average Approximation of Expected Value Constrained Stochastic Programs

We propose a sample average approximation (SAA) method for stochastic programming problems involving an expected value constraint. Such problems arise, for example, in portfolio selection with constraints on conditional value-at-risk (CVaR). Our contributions include an analysis of the convergence rate and a statistical validation scheme for the proposed SAA method. Computational results using a portfolio … Read more

Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations

In this work, we take advantage of the powerful quadratic programming theory to obtain optimal solutions of scheduling problems. We apply a methodology that starts, in contrast to more classical approaches, by formulating three unrelated parallel machine scheduling problems as 0–1 quadratic programs under linear constraints. By construction, these quadratic programs are non-convex. Therefore, before … Read more

The Transportation Paradox Revisited

The transportation paradox is related to the classical transportation problem. For certain instances of this problem an increase in the amount of goods to be transported may lead to a decrease in the optimal total transportation cost. Even though the paradox has been known since the early days of linear programming, it has got very … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

SNDlib 1.0–Survivable Network Design Library

We provide information on the Survivable Network Design Library (SNDlib), a data library for fixed telecommunication network design that can be accessed at http://sndlib.zib.de. In version 1.0, the library contains data related to 22 networks which, combined with a set of selected planning parameters, leads to 830 network planning problem instances. In this paper, we … Read more

Operations Risk Management by Planning Optimally the Qualified Workforce Capacity

Operational risks are defined as risks of human origin. Unlike financial risks that can be handled in a financial manner (e.g. insurances, savings, derivatives), the treatment of operational risks calls for a “managerial approach”. Consequently, we propose a new way of dealing with operational risk, which relies on the well known aggregate planning model. To … Read more