A unified approach for inversion problems in intensity-modulated radiation therapy

We propose and study a unified model for handling dose constraints (physical dose, equivalent uniform dose (EUD), etc.) and radiation source constraints in a single mathematical framework based on the split feasibility problem. The model does not impose on the constraints an exogenous objective (merit) function. The optimization algorithm minimizes a weighted proximity function that … Read more

Efficient Schemes for Robust IMRT Treatment Planning

We use robust optimization techniques to formulate an IMRT treatment planning problem in which the dose matrices are uncertain, due to both dose calculation errors and inter-fraction positional uncertainty of tumor and organs. When the uncertainty is taken into account, the original linear programming formulation becomes a second-order cone program. We describe a novel and … Read more

The multiple-sets split feasibility problem and its applications for inverse problems

The multiple-sets split feasibility problem requires to find a point closest to a family of closed convex sets in one space such that its image under a linear transformation will be closest to another family of closed convex sets in the image space. It can be a model for many inverse problems where constraints are … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more

Phylogenetic Analysis Via DC Programming

The evolutionary history of species may be described by a phylogenetic tree whose topology captures ancestral relationships among the species, and whose branch lengths denote evolution times. For a fixed topology and an assumed probabilistic model of nucleotide substitution, we show that the likelihood of a given tree is a d.c. (difference of convex) function … Read more

Regularization Using a Parameterized Trust Region Subproblem

We present a new method for regularization of ill-conditioned problems, such as those that arise in image restoration or mathematical processing of medical data. The method extends the traditional {\em trust-region subproblem}, \TRS, approach that makes use of the {\em L-curve} maximum curvature criterion, a strategy recently proposed to find a good regularization parameter. We … Read more

A Framework for Kernel Regularization with Applications to Protein Clustering

We develop and apply a novel framework which is designed to extract information in the form of a positive definite kernel matrix from possibly crude, noisy, incomplete, inconsistent dissimilarity information between pairs of objects, obtainable in a variety of contexts. Any positive definite kernel defines a consistent set of distances, and the fitted kernel provides … Read more

Continuous optimization of beamlet intensities for photon and proton radiotherapy

Inverse approaches and, in particular, intensity modulated radiotherapy (IMRT), in combination with the development of new technologies such as multi-leaf collimators (MLCs), have enabled new potentialities of radiotherapy for cancer treatment. The main mathematical tool needed in this connection is numerical optimization. In this article, the variety of continuous optimization approaches, which have been proposed … Read more

Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumor as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighboring intensities. Accurately … Read more