Group sparse recovery in impulsive noise via alternating direction method of multipliers

In this paper, we consider the recovery of group sparse signals corrupted by impulsive noise. In some recent literature, researchers have utilized stable data fitting models, like $l_1$-norm, Huber penalty function and Lorentzian-norm, to substitute the $l_2$-norm data fidelity model to obtain more robust performance. In this paper, a stable model is developed, which exploits … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e.\ problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These bounds unify, extend or improve all known upper and lower complexity bounds … Read more

Global Convergence in Deep Learning with Variable Splitting via the Kurdyka-{\L}ojasiewicz Property

Deep learning has recently attracted a significant amount of attention due to its great empirical success. However, the effectiveness in training deep neural networks (DNNs) remains a mystery in the associated nonconvex optimizations. In this paper, we aim to provide some theoretical understanding on such optimization problems. In particular, the Kurdyka-{\L}ojasiewicz (KL) property is established … Read more

Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods

Logistic regression is one of the most popular methods in binary classification, wherein estimation of model parameters is carried out by solving the maximum likelihood (ML) optimization problem, and the ML estimator is defined to be the optimal solution of this problem. It is well known that the ML estimator exists when the data is … Read more

Predicting the vibroacoustic quality of steering gears

In the daily operations of ThyssenKrupp Presta AG, ball nut assemblies (BNA) undergo a vibroacoustical quality test and are binary classified based on their order spectra. In this work we formulate a multiple change point problem and derive optimal quality intervals and thresholds for the order spectra that minimize the number of incorrectly classified BNA. … Read more

Correlation analysis between the vibroacoustic behavior of steering gear and ball nut assemblies in the automotive industry

The increase in quality standards in the automotive industry requires specifications to be propagated across the supply chain, a challenge exacerbated in domains where the quality is subjective. In the daily operations of ThyssenKrupp Presta AG, requirements imposed on the vibroacoustic quality of steering gear need to be passed down to their subcomponents. We quantify … Read more

Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more

Robust Principal Component Analysis using Facial Reduction

We study algorithms for robust principal component analysis (RPCA) for a partially observed data matrix. The aim is to recover the data matrix as a sum of a low-rank matrix and a sparse matrix so as to eliminate erratic noise (outliers). This problem is known to be NP-hard in general. A classical way to solve … Read more