Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more

Spectral Gap Optimization of Divergence Type Diffusion Operators

In this paper, we address the problem of maximizing the spectral gap of a divergence type diffusion operator. Our main application of interest is characterizing the distribution of a swarm of agents that evolve on a bounded domain in Rn according to a Markov process. A subclass of the divergence type operators that we introduce … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

Maximizing the storage capacity of gas networks: a global MINLP approach

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler … Read more

Provably High-Quality Solutions for the Meal Delivery Routing Problem

Online restaurant aggregators with integrated meal delivery networks have become more common and more popular in the past few years. Meal delivery is arguably the ultimate challenge in last mile logistics: a typical order is expected to be delivered within an hour (much less if possible), and within minutes of the food becoming ready. We … Read more

Moments and convex optimization for analysis and control of nonlinear partial differential equations

This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a \emph{linear} equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is … Read more

Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems

We apply the basic principles underlying combinatorial integral approximation methods for mixed-integer optimal control with ordinary differential equations in general, and the sum-up rounding algorithm specifically, to optimization problems with partial differential equation (PDE) constraints. By doing so, we identify two possible generalizations that are applicable to problems involving PDE constraints with mesh-dependent integer variables, … Read more

A Decision Tool based on a Multi-Objective Methodology for designing High-Pressure Thermal Treatments in Food Industry

In this work, we propose a methodology for designing High-Pressure Thermal processes for food treatment. This approach is based on a multi-objective preference-based evolutionary optimization algorithm, called WASF-GA, combined with a decision strategy which provides the food engineer with the best treatment in accordance with some quality requirements. The resulting method is compared to a … Read more

Mixed-Integer PDE-Constrained Optimal Control of Gas Networks

We develop a mixed-integer optimal control model with partial differential equation (PDE) constraints for gas transport networks, designed for controlling extreme state transitions, such as flow reversals. Our model shows how to combine binary compressor controls with PDE flow models. We model the flow of gas using a variant of the Euler equations, which we … Read more

A partial outer convexification approach to control transmission lines

In this paper we derive an efficient optimization approach to calculate optimal controls of electric transmission lines. These controls consist of time-dependent inflows and switches that temporarily disable single arcs or whole subgrids to reallocate the flow inside the system. The aim is then to find the best energy input in terms of boundary controls … Read more