Optimal structure of gas transmission trunklines

In this paper, we consider the optimal design of a straight pipeline system. Suppose a gas pipeline is to be designed to transport a specified flowrate from the entry point to the gas demand point. Physical and contractual requirements at supply and delivery nodes are known as well as the costs to buy and lay … Read more

Approximating Hessians in multilevel unconstrained optimization

We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented and compared numerically inside the multilevel trust-region algorithm proposed by … Read more

Project Scheduling

Nowadays, construction projects grow in complexity and size. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. Project scheduling consists of determining the starting and finishing times of the activities in a project. These activities are linked by precedence relations and their processing requires one or more resources. … Read more

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection

In this paper, we consider estimating sparse inverse covariance of a Gaussian graphical model whose conditional independence is assumed to be partially known. Similarly as in [5], we formulate it as an $l_1$-norm penalized maximum likelihood estimation problem. Further, we propose an algorithm framework, and develop two first-order methods, that is, adaptive spectral projected gradient … Read more

Generalized power method for sparse principal component analysis

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, … Read more

Sensitivity analysis of the optimal solutions to Huff-type competitive location and design problems

A chain wants to set up a single new facility in a planar market where similar facilities of competitors, and possibly of its own chain, are already present. Fixed demand points split their demand probabilistically over all facilities in the market proportionally with their attraction to each facility, determined by the different perceived qualities of … Read more

Global Optimization for the Design of Space Trajectories

The problem of optimally designing a trajectory for a space mission is considered in this paper. Actual mission design is a complex, multi-disciplinary and multi-objective activity with relevant economic implications. In this paper we will consider some simplified models proposed by the European Space Agency as test problems for global optimization. We show that many … Read more

Consideration of Gas Supply Contracts with Take-or-pay Clauses in the Brazilian Long-term Energy Planning

In Brazil’s long-term energy planning, the dispatch of thermal plants usually varies along a year. Such variation is essentially due to the predominance of the hydraulic mix in the system electric energy supply. For this reason, without preventive measures, a highly irregular cash flow occurs for natural gas (NG) providers, who supply gas for electric … Read more

Support vector machines with the ramp loss and the hard margin loss

In the interest of deriving classifiers that are robust to outlier observations, we present integer programming formulations of Vapnik’s support vector machine (SVM) with the ramp loss and hard margin loss. The ramp loss allows a maximum error of 2 for each training observation, while the hard margin loss calculates error by counting the number … Read more

Efficient Algorithmic Techniques for Several Multidimensional Geometric Data Management and Analysis Problems

this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment tree and range tree) and on the well-known sweep-line method. CitationProceedings of the 3rd International Conference “Knowledge Management – Projects, Systems and Technologies”, … Read more