Probing the Pareto frontier for basis pursuit solutions

The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously … Read more

Formulation of Oligopolistic Competition in AC Power Networks: An NLP Approach

In this paper, oligopolistic competition in a centralized power market is characterized by a multi-leader single-follower game, and formulated as a nonlinear programming (NLP) problem. An AC network is used to represent the transmission system and is modeled using rectangular coordinates. The follower is composed of a set of competitive suppliers, demands, and the system … Read more

A Class Representative Model for Pure Parsimony Haplotyping

Parsimonious haplotype estimation from aligned Single Nucleotide Polymorphism (SNP) fragments consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. This problem is known to be NP-Hard. Here we describe a new integer linear-programming model to tackle this problem based on the concept of class representatives, already used for … Read more

Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

In this paper, we study convex optimization methods for computing the trace norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [17], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and … Read more

LASSO-Patternsearch Algorithm with Application to Ophthalmology and Genomic Data

The LASSO-Patternsearch algorithm is proposed as a two-step method to identify clusters or patterns of multiple risk factors for outcomes of interest in demographic and genomic studies. The predictor variables are dichotomous or can be coded as dichotomous. Many diseases are suspected of having multiple interacting risk factors acting in concert, and it is of … Read more

Constraint Orbital Branching

Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer programs are structured such … Read more

Intensity based Three-Dimensional Reconstruction with Nonlinear Optimization

New images of a three-dimensional scene can be generated from known image sequences using lightfields. To get high quality images, it is important to have accurate information about the structure of the scene. In order to optimize this information, we define a residual-function. This function represents the difference between an image, rendered in a known … Read more

Dissimilarity Measures for Population-Based Global Optimization Algorithms

Very hard optimization problems, i.e., problems with a large number of variables and local minima, have been effectively attacked with algorithms which mix local searches with heuristic procedures in order to widely explore the search space. A Population Based Approach based on a Monotonic Basin Hopping optimization algorithm has turned out to be very effective … Read more

Multi-Secant Equations, Approximate Invariant Subspaces and Multigrid Optimization

New approximate secant equations are shown to result from the knowledge of (problem dependent) invariant subspace information, which in turn suggests improvements in quasi-Newton methods for unconstrained minimization. It is also shown that this type of information may often be extracted from the multigrid structure of discretized infinite dimensional problems. A new limited-memory BFGS using … Read more

Controlling the dose distribution with gEUD-type constraints within the convex IMRT optimization framework

Radiation therapy is an important modality in treating various cancers. Various treatment planning and delivery technologies have emerged to support Intensity Modulated Radiation Therapy (IMRT), creating significant opportunities to advance this type of treatment. We investigate the possibility of including the dose prescription, specified by the DVH, within the convex optimization framework for inverse IMRT … Read more