Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “L0-path” where the discontinuous L0-function provides the exact sparsity count; the “L1-path” where the L1-function provides a convex surrogate of sparsity count; … Read more

Approximate Dynamic Programming for Crowd-shipping with In-store Customers

Crowd-shipping has gained significant attention as a last-mile delivery option over the recent years. In this study, we propose a variant of dynamic crowd-shipping model with in-store customers as crowd-shippers to deliver online orders within few hours. We formulate the problem as a Markov decision process and develop an approximate dynamic programming (ADP) policy using … Read more

Applications of stochastic mixed-integer second-order cone optimization

Second-order cone programming problems are a tractable subclass of convex optimization problems and there are known polynomial algorithms for solving them. Stochastic second-order cone programming problems have also been studied in the past decade and efficient algorithms for solving them exist. A new class of interest to optimization community and practitioners is the mixed-integer version … Read more

Nonlinear matrix recovery using optimization on the Grassmann manifold

We investigate the problem of recovering a partially observed high-rank matrix whose columns obey a nonlinear structure such as a union of subspaces, an algebraic variety or grouped in clusters. The recovery problem is formulated as the rank minimization of a nonlinear feature map applied to the original matrix, which is then further approximated by … Read more

Determining locations and layouts for parcel lockers to support supply chain viability at the last mile

The pandemic caused by the corona virus SARS-CoV-2 raised many new challenges for humanity. For instance, governments imposed regulations such as lockdowns, resulting in supply chain shocks at different tiers. Additionally, delivery services reached their capacity limits because the demand for mail orders soared temporarily during the lockdowns. We argue that one option to support … Read more

Linearizing Bilinear Products of Shadow Prices and Dispatch Variables in Bilevel Problems for Optimal Power System Planning

This work presents a general method for linearizing bilinear terms in the upper level of bilevel optimization problems when the bilinear terms are products of the primal and dual variables of the lower level. Bilinear terms of this form often appear in energy market optimization models where the dual variable represents the market price of … Read more

Developments in mathematical algorithms and computational tools for proton CT and particle therapy treatment planning

We summarize recent results and ongoing activities in mathematical algorithms and computer science methods related to proton computed tomography (pCT) and intensitymodulated particle therapy (IMPT) treatment planning. Proton therapy necessitates a high level of delivery accuracy to exploit the selective targeting imparted by the Bragg peak. For this purpose, pCT utilizes the proton beam itself … Read more

Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation

Generation Capacity Expansion Planning (GCEP) requires high temporal resolution to account for the volatility of renewable energy supply. Because the GCEP optimization problem is often computationally intractable, time-series input data are often aggregated to representative periods using clustering. However, clustering removes extreme events, which are important to achieve reliable system designs. We present a method … Read more

Solving a Class of Cut-Generating Linear Programs via Machine Learning

Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome … Read more

Interpretable Policies and the Price of Interpretability in Hypertension Treatment Planning

Problem definition: Effective hypertension management is critical to reducing consequences of atherosclerotic cardiovascular disease, a leading cause of death in the United States. Clinical guidelines for hypertension can be enhanced using decision-analytic approaches, capable of capturing many complexities in treatment planning. However, model-generated recommendations may be uninterpretable/unintuitive, limiting their acceptability in practice. We address this … Read more