An Improved Method of Total Variation Superiorization Applied to Reconstruction in Proton Computed Tomography

Previous work showed that total variation superiorization (TVS) improves reconstructed image quality in proton computed tomography (pCT). The structure of the TVS algorithm has evolved since then and this work investigated if this new algorithmic structure provides additional benefits to pCT image quality. Structural and parametric changes introduced to the original TVS algorithm included: (1) … Read more

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more

On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving ERM problems with a nonsmooth regularization term. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or work only for specific regularizers. Our algorithm uses successive quadratic approximations, and we describe how to … Read more

Radar Waveform Optimization for Joint Radar Communications Performance

We develop and present a radar waveform design method that optimizes the spectral shape of the radar waveform so that joint performance of a cooperative radar-communications system is maximized. The continuous water-filling (WF) spectralmask shaping method presented in this paper is based the previously derived spectral-mask shaping technique. However, the method presented in this paper … Read more

An algorithm for computing Frechet means on the sphere

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Frechet means, which are points minimising the mean distance … Read more

A realistic energy optimization model for smart-home appliances

Smart homes have the potential to achieve optimal energy consumption with appropriate scheduling. The control of smart appliances can be based on optimization models, which should be realistic and efficient. However, increased realism also implies an increase in solution time. Many of the optimization models in the literature have limitations on the types of appliances … Read more

Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation

We present an extension of the cut-pursuit algorithm, introduced by Landrieu and Obozinski (2017), to the graph total-variation regularization of functions with a separable nondifferentiable part. We propose a modified algorithmic scheme as well as adapted proofs of convergence. We also present a heuristic approach for handling the cases in which the values associated to … Read more

FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL APPLICATIONS

A novel method for performing model updating on finite element models is presented. The approach is particularly tailored to modal analyses of buildings, by which the lowest frequencies, obtained by using sensors and system identification approaches, need to be matched to the numerical ones predicted by the model. This is done by optimizing some unknown … Read more

Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems

We apply the basic principles underlying combinatorial integral approximation methods for mixed-integer optimal control with ordinary differential equations in general, and the sum-up rounding algorithm specifically, to optimization problems with partial differential equation (PDE) constraints. By doing so, we identify two possible generalizations that are applicable to problems involving PDE constraints with mesh-dependent integer variables, … Read more