Basis Pursuit Denoise with Nonsmooth Constraints

Level-set optimization formulations with data-driven constraints minimize a regularization functional subject to matching observations to a given error level. These formulations are widely used, particularly for matrix completion and sparsity promotion in data interpolation and denoising. The misfit level is typically measured in the l2 norm, or other smooth metrics. In this paper, we present … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

A Unified Framework for Sparse Relaxed Regularized Regression: SR3

Regularized regression problems are ubiquitous in statistical modeling, signal processing, and machine learning. Sparse regression in particular has been instrumental in scientific model discovery, including compressed sensing applications, vari- able selection, and high-dimensional analysis. We propose a broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation of … Read more

Strong mixed-integer programming formulations for trained neural networks

We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. … Read more

Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e.\ problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These bounds unify, extend or improve all known upper and lower complexity bounds … Read more

n-step cutset inequalities: facets for multi-module capacitated network design problem

Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on links. In network design problems, decisions are made on installation of flow transfer capacities on the links and routing of flow from a set of source nodes to a set of sink nodes through the links. Many … Read more

Towards Resilient Operation of Multi-Microgrids: An MISOCP-Based Frequency-Constrained Approach

High penetration of distributed energy resources (DERs) is transforming the paradigm in power system operation. The ability to provide electricity to customers while the main grid is disrupted has introduced the concept of microgrids with many challenges and opportunities. Emergency control of dangerous transients caused by the transition between the grid-connected and island modes in … Read more

Data-Driven Maintenance and Operations Scheduling in Power Systems under Decision-Dependent Uncertainty

Generator maintenance scheduling plays a pivotal role in ensuring uncompromising operations of power systems. There exists a tight coupling between the condition of the generators and corresponding operational schedules, significantly affecting reliability of the system. In this study, we effectively model and solve an integrated condition-based maintenance and operations scheduling problem for a fleet of … Read more