Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount … Read more

Fabrication-Adaptive Optimization, with an Application to Photonic Crystal Design

It is often the case that the computed optimal solution of an optimization problem cannot be implemented directly, irrespective of data accuracy, due to either (i) technological limitations (such as physical tolerances of machines or processes), (ii) the deliberate simplification of a model to keep it tractable (by ignoring certain types of constraints that pose … Read more

Exploiting total unimodularity for classes of random network problems

Network analysis is of great interest for the study of social, biological and technological networks, with applications, among others, in business, marketing, epidemiology and telecommunications. Researchers are often interested in assessing whether an observed feature in some particular network is expected to be found within families of networks under some hypothesis (named conditional random networks, … Read more

Convex relaxation for finding planted influential nodes in a social network

We consider the problem of maximizing influence in a social network. We focus on the case that the social network is a directed bipartite graph whose arcs join senders to receivers. We consider both the case of deterministic networks and probabilistic graphical models, that is, the so-called “cascade” model. The problem is to find the … Read more

A Unified View on Relaxations for a Nonlinear Network Flow Problem

We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides … Read more

Sample Average Approximation Method for Compound Stochastic Optimization Problems

The paper studies stochastic optimization (programming) problems with compound functions containing expectations and extreme values of other random functions as arguments. Compound functions arise in various applications. A typical example is a variance function of nonlinear outcomes. Other examples include stochastic minimax problems, econometric models with latent variables, and multilevel and multicriteria stochastic optimization problems. … Read more

Family Constraining of Iterative Algorithms

In constraining iterative processes, the algorithmic operator of the iterative process is pre-multiplied by a constraining operator at each iterative step. This enables the constrained algorithm, besides solving the original problem, also to find a solution that incorporates some prior knowledge about the solution. This approach has been useful in image restoration and other image … Read more

Mixed Integer Second-Order Cone Programming Formulations for Variable Selection

This paper concerns the method of selecting the best subset of explanatory variables in a multiple linear regression model. To evaluate a subset regression model, some goodness-of-fit measures, e.g., adjusted R^2, AIC and BIC, are generally employed. Although variable selection is usually handled via a stepwise regression method, the method does not always provide the … Read more

Exploring the Modeling Capacity of Two-stage Robust Optimization — Two Variants of Robust Unit Commitment Model

To handle significant variability in loads, renewable energy generation, as well as various contingencies, two-stage robust optimization method has been adopted to construct unit commitment models and to ensure reliable solutions. In this paper, we further explore and extend the modeling capacity of two-stage robust optimization and present two new robust unit commitment variants, the … Read more

A Mixed Integer Nonlinear Programming Framework for Fixed Path Coordination of Multiple Underwater Vehicles under Acoustic Communication Constraints

Mixed Integer Nonlinear Programming (MINLP) techniques are increasingly used to address challenging problems in robotics, especially Multi-Vehicle Motion Planning (MVMP). The main contribution of this paper is a discrete time-distributed Receding Horizon Mixed Integer Nonlinear Programming (RH-MINLP) formulation of the underwater multi-vehicle path coordination problem with constraints on kinematics, dynamics, collision avoidance, and acoustic communication … Read more