Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of Hamilton-Jacobi-Bellman inequalities is also characterized. The LPs … Read more

Generalized Inexact Proximal Algorithms: Habit’s/ Routine’s Formation with Resistance to Change, following Worthwhile Changes

This paper shows how, in a quasi metric space, an inexact proximal algorithm with a generalized perturbation term appears to be a nice tool for Behavioral Sciences (Psychology, Economics, Management, Game theory,…). More precisely, the new perturbation term represents an index of resistance to change, defined as a “curved enough” function of the quasi distance … Read more

Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

Finding the largest low-rank clusters with Ky Fan 2-k-norm and l1-norm

We propose a convex optimization formulation with the Ky Fan 2-k-norm and l1-norm to fi nd k largest approximately rank-one submatrix blocks of a given nonnegative matrix that has low-rank block diagonal structure with noise. We analyze low-rank and sparsity structures of the optimal solutions using properties of these two matrix norms. We show that, under … Read more

Inverse optimal control with polynomial optimization

In the context of optimal control, we consider the inverse problem of Lagrangian identification given system dynamics and optimal trajectories. Many of its theoretical and practical aspects are still open. Potential applications are very broad as a reliable solution to the problem would provide a powerful modeling tool in many areas of experimental science. We … Read more

Topology Optimization for Magnetic Circuits dedicated to Electric Propulsion

Abstract—In this paper, we present a method to solve inverse problems of electromagnetic circuit design which are formulated as a topology optimization problem. Indeed, by imposing the magnetic field inside a region, we search a best material distribution into variable domains. In order to perform this, we minimize the quadratic error between the prescribed magnetic … Read more

Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization

In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT Algorithm has been proposed which has strong convergence properties and a good ability to locate promising regions of the feasible domain. However, the … Read more

Problem Formulations for Simulation-based Design Optimization using Statistical Surrogates and Direct Search

Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and … Read more

String-Averaging Expectation-Maximization for Maximum Likelihood Estimation in Emission Tomography

We study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called String-Averaging Expectation-Maximization (SAEM). In the String-Averaging algorithmic regime, the index set of all underlying equations is split into subsets, called “strings,” and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points … Read more

Feasibility-Seeking and Superiorization Algorithms Applied to Inverse Treatment Planning in Radiation Therapy

We apply the recently proposed superiorization methodology (SM) to the inverse planning problem in radiation therapy. The inverse planning problem is represented here as a constrained minimization problem of the total variation (TV) of the intensity vector over a large system of linear two-sided inequalities. The SM can be viewed conceptually as lying between feasibility-seeking … Read more