Fairer Benchmarking of Optimization Algorithms via Derivative Free Optimization

Research in optimization algorithm design is often accompanied by benchmarking a new al- gorithm. Some benchmarking is done as a proof-of-concept, by demonstrating the new algorithm works on a small number of dicult test problems. Alternately, some benchmarking is done in order to demonstrate that the new algorithm in someway out-performs previous methods. In this … Read more

Total variation superiorization schemes in proton computed tomography image reconstruction

Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, noise in the reconstructed image increases with successive iterations. In the current work, we investigated the use of total variation superiorization (TVS) … Read more

Quest for the control on the second order derivatives: topology optimization with functional includes the state’s curvature

Many physical phenomena, governed by partial differential equations (PDEs), are second order in nature. This makes sense to pose the control on the second order derivatives of the field solution, in addition to zero and first order ones, to consistently control the underlaying process. However, this type of control is nontrivial and to the best … Read more

Minimum weight Topology optimization subject to unsteady heat equation and space-time pointwise constraints — toward automatic optimal riser design in the shape casting process

The automatic optimal design of feeding system in the shape casting process is considered in the present work. In fact, the goal is to find the optimal position, size, shape and topology of risers in the shape casting process. This problem is formulated as a minimum weight topology optimization problem subjected to a nonlinear transient … Read more

Non-linear approximations for solving 3D-packing MIP models: a heuristic approach

This article extends a previous work focused on a mixed integer programming (MIP) based heuristic approach, aimed at solving non-standard three-dimensional problems with additional conditions. The paper that follows considers a mixed integer non-linear (MINLP) reformulation of the previous model, to improve the former heuristic, based on linear relaxation. The approach described herewith is addressed, … Read more

Minimax optimization for handling range and setup uncertainties in proton therapy

Purpose: Intensity modulated proton therapy (IMPT) is sensitive to errors, mainly due to high stopping power dependency and steep beam dose gradients. Conventional margins are often insufficient to ensure robustness of treatment plans. In this article, a method is developed that takes the uncertainties into account during the plan optimization. Methods: Dose contributions for a … Read more

Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more

Penalty Decomposition Methods for Rank Minimization

In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first show that a class of matrix optimization problems can be solved as lower dimensional vector optimization problems. As a consequence, we establish that a class of rank minimization problems have closed form solutions. Using this … Read more

Penalty Decomposition Methods for hBcNorm Minimization

In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing … Read more

MultiRTA: A simple yet accurate method for predicting peptide binding affinities for multiple class II MHC allotypes

Background: The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due … Read more