Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more

Penalty Decomposition Methods for Rank Minimization

In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first show that a class of matrix optimization problems can be solved as lower dimensional vector optimization problems. As a consequence, we establish that a class of rank minimization problems have closed form solutions. Using this … Read more

Penalty Decomposition Methods for hBcNorm Minimization

In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing … Read more

MultiRTA: A simple yet accurate method for predicting peptide binding affinities for multiple class II MHC allotypes

Background: The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due … Read more

Accelerated Block-Coordinate Relaxation for Regularized Optimization

We discuss minimization of a smooth function to which is added a separable regularization function that induces structure in the solution. A block-coordinate relaxation approach with proximal linearized subproblems yields convergence to critical points, while identification of the optimal manifold (under a nondegeneracy condition) allows acceleration techniques to be applied on a reduced space. The … Read more

Calibrating Artificial Neural Networks by Global Optimization

An artificial neural network (ANN) is a computational model – implemented as a computer program – that is aimed at emulating the key features and operations of biological neural networks. ANNs are extensively used to model unknown or unspecified functional relationships between the input and output of a “black box” system. In order to apply … Read more

Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization I: a Generic Algorithmic Framework

In this paper we present a generic algorithmic framework, namely, the accelerated stochastic approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization (SCO) problems. While the classical stochastic approximation (SA) algorithms are asymptotically optimal for solving differentiable and strongly convex problems, the AC-SA algorithm, when employed with proper stepsize policies, can achieve optimal or … Read more

Euclidean Distance Matrix Completion Problems

A Euclidean distance matrix is one in which the $(i,j)$ entry specifies the squared distance between particle $i$ and particle $j$. Given a partially-specified symmetric matrix $A$ with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make $A$ a Euclidean distance matrix. We survey three different approaches … Read more

A Non-monotonic Method for Large-scale Nonnegative Least Squares

We present a new algorithm for nonnegative least-squares (NNLS). Our algorithm extends the unconstrained quadratic optimization algorithm of Barzilai and Borwein (BB) (J. Barzilai and J. M. Borwein; Two-Point Step Size Gradient Methods. IMA J. Numerical Analysis; 1988.) to handle nonnegativity constraints. Our extension diff ers in several basic aspects from other constrained BB variants. The … Read more

An Efficient Method to Estimate the Suboptimality of Affine Controllers

We consider robust output feedback control of time-varying, linear discrete-time systems operating over a finite horizon. For such systems, we consider the problem of designing robust causal controllers that minimize the expected value of a convex quadratic cost function, subject to mixed linear state and input constraints. Determination of an optimal control policy for such … Read more