Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures

In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the problem are presented and some theoretical results about the existence and number of solutions are derived. Finally, two homotopy methods and a global optimization one are introduced and computationally tested. One of the homotopy … Read more

Efficient Direct Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons

We address direct multiple shooting based algorithms for nonlinear model predictive control, with a focus on problems with long prediction horizons. We describe different efficient multiple shooting variants with a computational effort that is only linear in the horizon length. Proposed techniques comprise structure exploiting linear algebra on the one hand, and approximation of derivative … Read more

The Reliable Hub-and-spoke Design Problem: Models and Algorithms

This paper presents a study on reliable single and multiple allocation hub-and-spoke network design problems where disruptions at hubs and the resulting hub unavailability can be mitigated by backup hubs and alternative routes. It builds nonlinear mixed integer programming models and presents linearized formulas. To solve those difficult problems, Lagrangian relaxation and Branch-and-Bound methods are … Read more

A stochastic multiscale model for electricity generation capacity expansion

Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled using simplified models or heuristics to approximate the short-term dynamics. However, current trends such as increasing penetration of intermittent renewable generation and increased demand response requires a coupling of both the long and short term dynamics. We present an efficient method for … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

Neighborhood based heuristics for a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication network architectures a given set of client nodes must be served by different kinds of facility, which provide di fferent services and have diff erent capabilities. Such facilities must be located and dimensioned in the design phase. We tackle a particular location problem in which two sets of facilities, mid level and high level, … Read more

A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem

The single row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange … Read more

Hierarchical Classification via Orthogonal Transfer

We consider multiclass classification problems where the set of labels are organized hierarchically as a category tree. We associate each node in the tree with a classifier and classify the examples recursively from the root to the leaves. We propose a hierarchical Support Vector Machine (SVM) that encourages the classifier at each node of the … Read more

Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms

We analyze globally convergent derivative-free trust region algorithms relying on radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg, and Vicente to fully linear models that have a nonlinear term. We characterize the types of radial basis functions that fit in our analysis and thus show global convergence to first-order … Read more