Dimensionality Reduction in Bilevel Linear Programming

We consider bilevel programs that involve a leader, who first commits to a mixed-integer decision, and a follower, who observes this decision and then responds rationally by solving a linear program (LP). Standard approaches often reformulate these bilevel optimization problems as single-level mixed-integer programs by exploiting the follower’s LP optimality conditions. These reformulations introduce either … Read more

Solving bilevel optimization via sequential minimax optimization

In this paper we propose a sequential minimax optimization (SMO) method for solving a class of constrained bilevel optimization problems in which the lower-level part is a possibly nonsmooth convex optimization problem, while the upper-level part is a possibly nonconvex optimization problem. Specifically, SMO applies a first-order method to solve a sequence of minimax subproblems, … Read more

A Combinatorial Branch-and-Bound Algorithm for the Capacitated Facility Location Problem under Strict Customer Preferences

This work proposes a combinatorial branch-and-bound (B&B) algorithm for the capacitated facility location problem under strict customer preferences (CFLP-SCP). We use combinatorial insights into the problem structure to do preprocessing, model branching implications, enforce feasibility or prove infeasibility in each node, select variables and derive primal and dual bounds in each node of the B&B … Read more

Inverse Optimization with Discrete Decisions

Inverse optimization (IO) has emerged as a powerful framework for analyzing prescriptive model parameters that rationalize observed or prescribed decisions. Despite the prevalence of discrete decision-making models, existing work has primarily focused on continuous and convex models, for which the corresponding IO problems are far easier to solve. This paper makes three contributions that broaden … Read more

Counterfactual explanations with the k-Nearest Neighborhood classifier and uncertain data

Counterfactual Analysis is a powerful tool in Explainable Machine Learning. Given a classifier and a record, one seeks the smallest perturbation necessary to have the perturbed record, called the counterfactual explanation, classified in the desired class. Feature uncertainty in data reflects the inherent variability and noise present in real-world scenarios, and therefore, there is a … Read more

Improving Directions in Mixed Integer Bilevel Linear Optimization

We consider the central role of improving directions in solution methods for mixed integer bilevel linear optimization problems (MIBLPs). Current state-of-the-art methods for solving MIBLPs employ the branch-and-cut framework originally developed for solving mixed integer linear optimization problems. This approach relies on oracles for two kinds of subproblems: those for checking whether a candidate pair … Read more

A guided tour through the zoo of paired optimization problems

Many mathematical models base on the coupling of two or more optimization problems. This paper surveys possibilities to couple two optimization problems and discusses how solutions of the different models are interrelated with each other. The considered pairs stem from the fields of standard and generalized Nash equilibrium problems, optimistic and pessimistic bilevel problems, saddle … Read more

Counterfactual Explanations for Integer Optimization Problems

Counterfactual explanations (CEs) offer a human-understandable way to explain decisions by identifying specific changes to the input parameters of a base or present model that would lead to a desired change in its outcome. For optimization models, CEs have primarily been studied in limited contexts, such as linear optimization problems with continuous decision variables or … Read more

Solving the Partial Inverse Knapsack Problem

In this paper, we investigate the partial inverse knapsack problem, a bilevel optimization problem in which the follower solves a classical 0/1-knapsack problem with item profit values comprised of a fixed part and a modification determined by the leader. Specifically, the leader problem seeks a minimal change to given item profits such that there is … Read more

Second order directional derivative of optimal solution function in parametric programming problem

In this paper, the second-order directional derivative of the optimal value function and the optimal solution function are obtained for a strongly stable parametric problem with non-unique Lagrange multipliers. Some properties of the Lagrange multipliers are proved. It is justified that the second-order directional derivative of the optimal solution function for the parametric problem can … Read more