A Structural Equivalence of Symmetric TSP to a Constrained Group Steiner Tree Problem

We present a brief structural equivalence between the symmetric TSP and a constrained Group Steiner Tree Problem (cGSTP) defined on a simplicial incidence graph. Given the complete weighted graph on the city set V, we form the bipartite incidence graph between triangles and edges. Selecting an admissible, disk-like set of triangles induces a unique boundary … Read more

A first approximation algorithm for the Bin Packing Problem with Setups

We study constant-factor approximation algorithms for the Bin Packing Problem with Setups (BPPS). First, we show that adaptations of classical BPP heuristics can have arbitrarily poor worst-case performance on BPPS instances. Then, we propose a two-phase heuristic for the BPPS that applies an α-approximation algorithm for the BPP to the items of each class and … Read more

Greedy Algorithms with Imprecise Oracles for Submodular Knapsack Problems

We consider the problem of maximizing a monotone increasing, normalized, and submodular function defined on a set of weighted items under a knapsack constraint. A well-known greedy algorithm, analyzed by Wolsey (1982), achieves an approximation factor of \(0.357\) for this problem. This greedy algorithm starts with an empty solution set and iteratively generates a feasible … Read more

Recoverable Robust Cardinality Constrained Maximization with Commitment of a Submodular Function

We consider a game-theoretic variant of maximizing a monotone increasing, submodular function under a cardinality constraint. Initially, a solution to this classical problem is determined. Subsequently, a predetermined number of elements from the ground set, not necessarily contained in the initial solution, are deleted, potentially reducing the solution’s cardinality. If any deleted elements were part … Read more

Novel closed-loop controllers for fractional linear quadratic tracking systems

A new method for finding closed-loop optimal controllers of fractional tracking quadratic optimal control problems is introduced. The optimality conditions for the fractional optimal control problem are obtained. Illustrative examples are presented to show the applicability and capabilities of the method. ArticleDownload View PDF

Two approaches to piecewise affine approximation

The problem of approximation by piecewise affine functions has been studied for several decades (least squares and uniform approximation). If the location of switches from one affine piece to another (knots for univariate approximation) is known the problem is convex and there are several approaches to solve this problem. If the location of such switches … Read more

Sequential Rounding in Mixed-Integer Model Predictive Control

This paper interfaces combinatorial integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions to establish practical asymptotic stability results for finite-control set and mixed-integer model predictive control. We examine the impact of sequential control rounding on the closed-loop performance in terms of stability and optimality. Sum-up rounding … Read more

Descent Scheme for a Class of Bilevel Programming Problems

In this paper, a class of bilevel programming problems is studied, in which the lower level is a quadratic programming problem, and the upper level problem consists of a nonlinear objective function with coupling constraints. An iterative process is developed to generate a sequence of points, which converges to the solution of this problem. In … Read more

Improved Approximation Algorithms for Orthogonally Constrained Problems Using Semidefinite Optimization

Building on the blueprint from Goemans and Williamson (1995) for the Max-Cut problem, we construct a polynomial-time approximation algorithm for orthogonally constrained quadratic optimization problems. First, we derive a semidefinite relaxation and propose a randomized rounding algorithm to generate feasible solutions from the relaxation. Second, we derive purely multiplicative approximation guarantees for our algorithm. When … Read more

Integrated Optimization of Timetabling and Electric Vehicle Scheduling: A Case Study of Aachen, Germany

We tackle the integrated planning problem of periodic timetabling and electric vehicle scheduling, crucial for cities transitioning to electric bus fleets. Given existing timetables, we allow only minor modifications and propose an iterative solution approach that addresses the Electric Vehicle Scheduling Problem (EVSP) in each iteration. Due to the NP-hard nature of EVSP, we employ … Read more