Optimizing the Trade-Off Between Batching and Waiting: Subadditive Dispatching

Motivated by applications in e-commerce logistics where orders or items arrive at different times and must be dispatched or processed in batches, we propose the subadditive dispatching problem (SAD), a strongly NP-hard problem defined by a set of orders with release times and a non-decreasing subadditive dispatch time function. A single uncapacitated vehicle must dispatch … Read more

An approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear interpolation of the bivariate product xy over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the interpolation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using these as … Read more

Approximation algorithm for the two-stage stochastic set multicover problem with simple resource

We study a two-stage, finite-scenarios stochastic version of the set multicover problem, where there is uncertainty about a demand for each element to be covered and the penalty cost is imposed linearly on the shortfall in each demand. This problem is NP-hard and has an application in shift scheduling in crowdsourced delivery services. For this … Read more

Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph

De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)-1$: $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour … Read more

Boole-Bonferroni Inequalities to Approximately Determine Optimal Arrangements

We consider the problem of laying out several objects in an equal number of pre-defined positions. Objects are allowed finitely many orientations, can overlap each other, and must be arranged contiguously. We are particularly interested in the case when the evaluation of the dimensions of the objects requires computational or physical effort. We develop a … Read more

Local search and swapping strategies.Challenging the greedy maximization of a polymatroid subject to a cardinality constraint

This paper studies the maximization of a polymatroid subject to a cardinality constraint. In particular, we consider the problem of improving the value of the greedy set by swapping one of its members with an element that does not belong to it. To achieve this goal, we first define a (set-based) post-greedy measure of curvature … Read more

Model-Free Assortment Pricing with Transaction Data

We study a problem in which a firm sets prices for products based on the transaction data, i.e., which product past customers chose from an assortment and what were the historical prices that they observed. Our approach does not impose a model on the distribution of the customers’ valuations and only assumes, instead, that purchase … Read more

Matching Algorithms and Complexity Results for Constrained Mixed-Integer Optimal Control with Switching Costs

We extend recent work on the performance of the combinatorial integral approximation decomposition approach for Mixed-Integer Optimal Control Problems (MIOCPs) in the presence of combinatorial constraints or switching costs on an equidistant grid. For the time discretized problem, we reformulate the emerging rounding problem in the decomposition approach as a matching problem on a bipartite … Read more

Selective Maximum Coverage and Set Packing

In this paper we introduce the selective maximum coverage and the selective maximum set packing problem and variants of them. Both problems are strongly related to well studied problems such as maximum coverage, set packing, and (bipartite) hypergraph matching. The two problems are given by a collection of subsets of a ground set and index … Read more

The Multi-Stop Station Location Problem

We introduce the (directed) multi-stop station location problem. The goal is to install stations such that ordered (multi-)sets of stops can be traversed with respect to range restrictions that are reset whenever a station is visited. Applications arise in telecommunications and transportation, e.g., charging station placement problems. The problem generalizes several network optimization problems such … Read more