Minimizing earliness-tardiness costs in supplier networks – A Just-in-time Truck Routing Problem

We consider a routing problem where orders are transported just-in-time from several suppliers to an original equipment manufacturer (OEM). This implies that shipments cannot be picked up before their release date when they are ready at the supplier and should be delivered as close as possible to their due date to the OEM. Every shipment … Read more

Minimum-Link Covering Trails for any Hypercubic Lattice

\(\) In 1994, Kranakis et al. published a conjecture about the minimum link-length of every rectilinear covering path for the \(k\)-dimensional grid \(P(n,k) := \{0,1, \dots, n-1\} \times \{0,1, \dots, n-1\} \times \cdots \times \{0,1, \dots, n-1\}\). In this paper we consider the general, NP-complete, Line-Cover problem, where the edges are not required to be … Read more

Mathematical models and decomposition methods for the two-bar charts packing problem

We consider the two-bar charts packing (2-BCPP), a recent combinatorial optimization problem whose aim is to pack a set of one-dimensional items into the minimum number of bins. As opposed to the well-known bin packing problem, pairs of items are grouped to form bar charts, and a solution is only feasible if the first and … Read more

A new family of route formulations for split delivery vehicle routing problems

We propose a new family of formulations with route-based variables for the split delivery vehicle routing problem with and without time windows. Each formulation in this family is characterized by the maximum number of different demand quantities that can be delivered to a customer during a vehicle visit. As opposed to previous formulations in the … Read more

Tight Probability Bounds with Pairwise Independence

\(\) While useful probability bounds for \(n\) pairwise independent Bernoulli random variables adding up to at least an integer \(k\) have been proposed in the literature, none of these bounds are tight in general. In this paper, we provide several results in this direction. Firstly, when \(k = 1\), the tightest upper bound on the … Read more

CliSAT: a SAT-based exact algorithm for hard maximum clique problems

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to solve the MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial optimization due to its practical relevance for a … Read more

Benders-type Branch-and-Cut Algorithms for Capacitated Facility Location with Single-Sourcing

We consider the capacitated facility location problem with (partial) single-sourcing (CFLP-SS). A natural mixed integer formulation for the problem involves 0-1 variables x_j indicating whether faclility j is used or not and y_{ij} variables indicating the fraction of the demand of client i that is satisfied from facility j. When the x variables are fixed, … Read more

On the Complexity of Finding Shortest Variable Disjunction Branch-and-Bound Proofs

We investigate the complexity of finding small branch-and-bound trees using variable disjunctions. We first show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of 2^(1/5) in time 2^(\delta n) with \delta < 1/5, unless the strong exponential time hypothesis fails. Similarly, for any \varepsilon > 0, … Read more

An approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear interpolation of the bivariate product xy over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the interpolation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using these as … Read more