On Integer and Bilevel Formulations for the k-Vertex Cut Problem

The family of Critical Node Detection Problems asks for finding a subset of vertices, deletion of which minimizes or maximizes a predefined connectivity measure on the remaining network. We study a problem of this family called the k-vertex cut problem. The problems asks for determining the minimum weight subset of nodes whose removal disconnects a … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints

Cutting planes from the Boolean Quadric Polytope (BQP) can be used to reduce the optimality gap of the NP-hard nonconvex quadratic program with box constraints (BoxQP). It is known that all cuts of the Chvátal-Gomory closure of the BQP are A-odd cycle inequalities. We obtain a compact extended relaxation of all A-odd cycle inequalities, which … Read more

Two-row and two-column mixed-integer presolve using hash-based pairing methods

In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolving techniques successfully is … Read more

Scheduling Post-disaster Repairs in Electricity Distribution Networks with Uncertain Repair Times

Natural disasters, such as hurricanes, large wind and ice storms, typically require the repair of a large number of components in electricity distribution networks. Since power cannot be restored before the completion of repairs, optimally scheduling the available crews to minimize the cumulative duration of the customer interruptions reduces the harm done to the affected … Read more

Branch-and-Cut-and-Price for Multi-Agent Pathfinding

There are currently two broad strategies for optimal Multi-agent Pathfinding (MAPF): (1) search-based methods, which model and solve MAPF directly, and (2) compilation-based solvers, which reduce MAPF to instances of well-known combinatorial problems, and thus, can benefit from advances in solver techniques. In this work, we present an optimal algorithm, BCP, that hybridizes both approaches … Read more

Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Constraint Programming Approaches for the Discretizable Molecular Distance Geometry Problem

The Distance Geometry Problem (DGP) seeks to find positions for a set of points in geometric space when some distances between pairs of these points are known. The so-called discretization assumptions allow to discretize the search space of DGP instances. In this paper, we focus on a key subclass of DGP, namely the Discretizable Molecular … Read more

Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems

Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in K-dimensional space such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called … Read more