A modern POPMUSIC matheuristic for the capacitated vehicle routing problem

This work proposes a partial optimization metaheuristic under special intensification conditions (POPMUSIC) for the classical capacitated vehicle routing problem (CVRP). The proposed approach uses a branch-cut-and-price algorithm as a powerful heuristic to solve subproblems whose dimensions are typically between 25 and 200 customers. The whole algorithm can be seen as the application of local search … Read more

Compact Integer Linear Programming Formulations for the Temporal Bin Packing Problem with Fire-Ups

In this article we examine a specific version of the temporal bin packing problem (TBPP) that occurs in job-to-server scheduling. The TBPP represents a generalization of the well-known bin packing problem (BPP) with respect to an additional time dimension, and it requires to find the minimum number of bins (servers) to accommodate a given list … Read more

New algorithms for hierarchical optimisation in kidney exchange programmes

Kidney exchange programmes (KEPs) across the world help match donors and recipients to identify kidney transplantations. Almost all KEPs use a hierarchical set of objectives to determine an optimal set of transplants to perform, and integer linear programming is often used to find such optimal matchings. In this work, we identify the barriers in existing … Read more

Matching Algorithms and Complexity Results for Constrained Mixed-Integer Optimal Control with Switching Costs

We extend recent work on the performance of the combinatorial integral approximation decomposition approach for Mixed-Integer Optimal Control Problems (MIOCPs) in the presence of combinatorial constraints or switching costs on an equidistant grid. For the time discretized problem, we reformulate the emerging rounding problem in the decomposition approach as a matching problem on a bipartite … Read more

Optimal Steiner Trees Under Node and Edge Privacy Conflicts

In this work, we suggest concepts and solution methodologies for a series of strategic network design problems that find application in highly data-sensitive industries, such as, for instance, the high-tech, governmental, or military sector. Our focus is on the installation of widely used cost-efficient tree-structured communication infrastructure. As base model we use the well-known Steiner … Read more

Improved Branch-and-Cut for the Inventory Routing Problem Based on a Two-Commodity Flow Formulation

This paper examines the Inventory Routing Problem (IRP) with Maximum Level inventory policy. The IRP is a broad class of hard to solve problems with numerous practical applications in the field of freight transportation and logistics. A supplier is responsible for determining the timing and the quantity of replenishment services offered to a set of … Read more

Mathematical Models and Approximate Solution Approaches for the Stochastic Bin Packing Problem

We consider the (single-stage) stochastic bin packing problem (SBPP) which is based on a given list of items the sizes of which are represented by stochastically independent random variables. The SBPP requires to determine the minimum number of unit capacity bins needed to pack all the items, such that for each bin the probability of … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

A Branch-Cut-and-Price Algorithm for the Time-Dependent Electric Vehicle Routing Problem with Time Windows

The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transformations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints to the models such as a restricted driving range and the possibility to perform recharges in-route. The discharge of the typical batteries is complex and depends on … Read more

SDP-based bounds for the Quadratic Cycle Cover Problem via cutting plane augmented Lagrangian methods and reinforcement learning

We study the Quadratic Cycle Cover Problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the … Read more