Enriching Solutions to Combinatorial Problems via Solution Engineering

Existing approaches to identify multiple solutions to combinatorial problems in practice are at best limited in their ability to simultaneously incorporate both diversity among generated solutions, as well as problem-specific desires that are apriori unknown, or at least difficult to articulate, for the end-user. We propose a general framework that can generate a set of … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

The Vertex k-cut Problem

Given an undirected graph G = (V, E), a vertex k-cut of G is a vertex subset of V the removing of which disconnects the graph in at least k connected components. Given a graph G and an integer k greater than or equal to two, the vertex k-cut problem consists in finding a vertex … Read more

A Note on Submodular Function Minimization by Chubanov’s LP Algorithm

Recently Dadush, Vegh, and Zambelli (2017) has devised a polynomial submodular function minimization (SFM) algorithm based on their LP algorithm. In the present note we also show a weakly polynomial algorithm for SFM based on the recently developed linear programming feasibility algorithm of Chubanov (2017). Our algorithm is different from Dadush, Vegh, and Zambelli’s but … Read more

Computation of exact bootstrap confidence intervals: complexity and deterministic algorithms

The bootstrap is a nonparametric approach for calculating quantities, such as confidence intervals, directly from data. Since calculating exact bootstrap quantities is believed to be intractable, randomized resampling algorithms are traditionally used. Motivated by the fact that the variability from randomization can lead to inaccurate outputs, we propose a deterministic approach. First, we establish several … Read more

Robust Combinatorial Optimization under Convex and Discrete Cost Uncertainty

In this survey, we discuss the state-of-the-art of robust combinatorial optimization under uncertain cost functions. We summarize complexity results presented in the literature for various underlying problems, with the aim of pointing out the connections between the different results and approaches, and with a special emphasis on the role of the chosen uncertainty sets. Moreover, … Read more

A General Regularized Continuous Formulation for the Maximum Clique Problem

In this paper, we develop a general regularization-based continuous optimization framework for the maximum clique problem. In particular, we consider a broad class of regularization terms that can be included in the classic Motzkin-Strauss formulation and we develop conditions that guarantee the equivalence between the continuous regularized problem and the original one in both a … Read more

Parsimonious formulations for low-diameter clusters

In the analysis of networks, one often searches for tightly knit clusters. One property of a “good” cluster is a small diameter (say, bounded by $k$), which leads to the concept of a $k$-club. In this paper, we propose new path-like and cut-like integer programming formulations for detecting these low-diameter subgraphs. They simplify, generalize, and/or … Read more

Comparative Analysis of Capacitated Arc Routing Formulations for Branch-Cut-and-Price Algorithms

The current best exact algorithms for the Capacitated Arc Routing Problem are based on the combination of cut and column generation. This work presents a deep theoretical investigation of the formulations behind those algorithms, classifying them and pointing similarities and differences, advantages and disadvantages. In particular, we discuss which families of cuts and branching strategies … Read more

Planar Maximum Coverage Location Problem with Partial Coverage and General Spatial Representation of Demand and Service Zones

We introduce a new generalization of the classical planar maximum coverage location problem (PMCLP) in which demand zones and service zone of each facility are represented by spatial objects such as circles, polygons, etc., and are allowed to be located anywhere in a continuous plane. In addition, we allow partial coverage in its true sense, … Read more